Datasets:
Tasks:
Automatic Speech Recognition
Formats:
webdataset
Languages:
Catalan
Size:
100K - 1M
Tags:
central
License:
Upload parlament_parla_v3_asr_a.py
Browse files- parlament_parla_v3_asr_a.py +302 -0
parlament_parla_v3_asr_a.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import csv
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
_NAME="parlament_parla_v3_asr_a"
|
8 |
+
_VERSION="1.0.0"
|
9 |
+
|
10 |
+
_DESCRIPTION = """
|
11 |
+
This is the third version of the ParlamentParla speech corpus for Catalan: a collection of speech recordings with transcriptions intended for Automatic Speech Recognition (ASR) applications.
|
12 |
+
"""
|
13 |
+
|
14 |
+
_CITATION = """
|
15 |
+
@misc{bscib32024,
|
16 |
+
title={ParlamentParla v3 - Speech Corpus of Catalan Parliamentary Sessions},
|
17 |
+
author={Baybars, Kulebi},
|
18 |
+
publisher={Barcelona Supercomputing Center},
|
19 |
+
year={2024},
|
20 |
+
url={https://huggingface.co/datasets/projecte-aina/parlament_parla_v3_asr_a},
|
21 |
+
}
|
22 |
+
"""
|
23 |
+
|
24 |
+
_HOMEPAGE = "https://huggingface.co/datasets/projecte-aina/parlament_parla_v3_asr_a"
|
25 |
+
_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/deed.es"
|
26 |
+
|
27 |
+
_BASE_DATA_DIR = "corpus/"
|
28 |
+
|
29 |
+
_METADATA_CLEAN_TRAIN_SHORT = os.path.join(_BASE_DATA_DIR,"files","clean_train_parlament_short.csv")
|
30 |
+
_METADATA_CLEAN_TEST_SHORT = os.path.join(_BASE_DATA_DIR,"files", "clean_test_parlament_short.csv")
|
31 |
+
_METADATA_CLEAN_DEV_SHORT = os.path.join(_BASE_DATA_DIR,"files", "clean_dev_parlament_short.csv")
|
32 |
+
|
33 |
+
_METADATA_OTHER_TRAIN_SHORT = os.path.join(_BASE_DATA_DIR,"files","other_train_parlament_short.csv")
|
34 |
+
_METADATA_OTHER_TEST_SHORT = os.path.join(_BASE_DATA_DIR,"files", "other_test_parlament_short.csv")
|
35 |
+
_METADATA_OTHER_DEV_SHORT = os.path.join(_BASE_DATA_DIR,"files", "other_dev_parlament_short.csv")
|
36 |
+
|
37 |
+
_TARS_CLEAN_TRAIN_SHORT = os.path.join(_BASE_DATA_DIR,"files","tars_clean_train_short.paths")
|
38 |
+
_TARS_CLEAN_TEST_SHORT = os.path.join(_BASE_DATA_DIR,"files", "tars_clean_test_short.paths")
|
39 |
+
_TARS_CLEAN_DEV_SHORT = os.path.join(_BASE_DATA_DIR,"files", "tars_clean_dev_short.paths")
|
40 |
+
|
41 |
+
_TARS_OTHER_TRAIN_SHORT = os.path.join(_BASE_DATA_DIR,"files","tars_other_train_short.paths")
|
42 |
+
_TARS_OTHER_TEST_SHORT = os.path.join(_BASE_DATA_DIR,"files", "tars_other_test_short.paths")
|
43 |
+
_TARS_OTHER_DEV_SHORT = os.path.join(_BASE_DATA_DIR,"files", "tars_other_dev_short.paths")
|
44 |
+
|
45 |
+
|
46 |
+
_METADATA_CLEAN_TRAIN_LONG = os.path.join(_BASE_DATA_DIR,"files","clean_train_parlament_long.csv")
|
47 |
+
_METADATA_CLEAN_TEST_LONG = os.path.join(_BASE_DATA_DIR,"files", "clean_test_parlament_long.csv")
|
48 |
+
_METADATA_CLEAN_DEV_LONG = os.path.join(_BASE_DATA_DIR,"files", "clean_dev_parlament_long.csv")
|
49 |
+
|
50 |
+
_METADATA_OTHER_TRAIN_LONG = os.path.join(_BASE_DATA_DIR,"files","other_train_parlament_long.csv")
|
51 |
+
_METADATA_OTHER_TEST_LONG = os.path.join(_BASE_DATA_DIR,"files", "other_test_parlament_long.csv")
|
52 |
+
_METADATA_OTHER_DEV_LONG = os.path.join(_BASE_DATA_DIR,"files", "other_dev_parlament_long.csv")
|
53 |
+
|
54 |
+
_TARS_CLEAN_TRAIN_LONG = os.path.join(_BASE_DATA_DIR,"files","tars_clean_train_long.paths")
|
55 |
+
_TARS_CLEAN_TEST_LONG = os.path.join(_BASE_DATA_DIR,"files", "tars_clean_test_long.paths")
|
56 |
+
_TARS_CLEAN_DEV_LONG = os.path.join(_BASE_DATA_DIR,"files", "tars_clean_dev_long.paths")
|
57 |
+
|
58 |
+
_TARS_OTHER_TRAIN_LONG = os.path.join(_BASE_DATA_DIR,"files","tars_other_train_long.paths")
|
59 |
+
_TARS_OTHER_TEST_LONG = os.path.join(_BASE_DATA_DIR,"files", "tars_other_test_long.paths")
|
60 |
+
_TARS_OTHER_DEV_LONG = os.path.join(_BASE_DATA_DIR,"files", "tars_other_dev_long.paths")
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
class ParlamentASRConfig(datasets.BuilderConfig):
|
65 |
+
"""BuilderConfig for Parlament ASR"""
|
66 |
+
|
67 |
+
def __init__(self, name, **kwargs):
|
68 |
+
name=_NAME
|
69 |
+
super().__init__(name=name, **kwargs)
|
70 |
+
|
71 |
+
class ParlamentASR(datasets.GeneratorBasedBuilder):
|
72 |
+
"""Parlament ASR"""
|
73 |
+
|
74 |
+
VERSION = datasets.Version(_VERSION)
|
75 |
+
BUILDER_CONFIGS = [
|
76 |
+
ParlamentASRConfig(
|
77 |
+
name=_NAME,
|
78 |
+
version=datasets.Version(_VERSION),
|
79 |
+
)
|
80 |
+
]
|
81 |
+
|
82 |
+
def _info(self):
|
83 |
+
features = datasets.Features(
|
84 |
+
{
|
85 |
+
"identifier": datasets.Value("string"),
|
86 |
+
"audio": datasets.Audio(sampling_rate=16000),
|
87 |
+
"segment_path": datasets.Value("string"),
|
88 |
+
"text": datasets.Value("string"),
|
89 |
+
}
|
90 |
+
)
|
91 |
+
return datasets.DatasetInfo(
|
92 |
+
description=_DESCRIPTION,
|
93 |
+
features=features,
|
94 |
+
homepage=_HOMEPAGE,
|
95 |
+
license=_LICENSE,
|
96 |
+
citation=_CITATION,
|
97 |
+
)
|
98 |
+
|
99 |
+
def _split_generators(self, dl_manager):
|
100 |
+
|
101 |
+
metadata_clean_train_short=dl_manager.download_and_extract(_METADATA_CLEAN_TRAIN_SHORT)
|
102 |
+
metadata_clean_test_short=dl_manager.download_and_extract(_METADATA_CLEAN_TEST_SHORT)
|
103 |
+
metadata_clean_dev_short=dl_manager.download_and_extract(_METADATA_CLEAN_DEV_SHORT)
|
104 |
+
|
105 |
+
metadata_other_train_short=dl_manager.download_and_extract(_METADATA_OTHER_TRAIN_SHORT)
|
106 |
+
metadata_other_test_short=dl_manager.download_and_extract(_METADATA_OTHER_TEST_SHORT)
|
107 |
+
metadata_other_dev_short=dl_manager.download_and_extract(_METADATA_OTHER_DEV_SHORT)
|
108 |
+
|
109 |
+
tars_clean_train_short=dl_manager.download_and_extract(_TARS_CLEAN_TRAIN_SHORT)
|
110 |
+
tars_clean_test_short=dl_manager.download_and_extract(_TARS_CLEAN_TEST_SHORT)
|
111 |
+
tars_clean_dev_short=dl_manager.download_and_extract(_TARS_CLEAN_DEV_SHORT)
|
112 |
+
|
113 |
+
tars_other_train_short=dl_manager.download_and_extract(_TARS_OTHER_TRAIN_SHORT)
|
114 |
+
tars_other_test_short=dl_manager.download_and_extract(_TARS_OTHER_TEST_SHORT)
|
115 |
+
tars_other_dev_short=dl_manager.download_and_extract(_TARS_OTHER_DEV_SHORT)
|
116 |
+
|
117 |
+
|
118 |
+
metadata_clean_train_long=dl_manager.download_and_extract(_METADATA_CLEAN_TRAIN_LONG)
|
119 |
+
metadata_clean_test_long=dl_manager.download_and_extract(_METADATA_CLEAN_TEST_LONG)
|
120 |
+
metadata_clean_dev_long=dl_manager.download_and_extract(_METADATA_CLEAN_DEV_LONG)
|
121 |
+
|
122 |
+
metadata_other_train_long=dl_manager.download_and_extract(_METADATA_OTHER_TRAIN_LONG)
|
123 |
+
metadata_other_test_long=dl_manager.download_and_extract(_METADATA_OTHER_TEST_LONG)
|
124 |
+
metadata_other_dev_long=dl_manager.download_and_extract(_METADATA_OTHER_DEV_LONG)
|
125 |
+
|
126 |
+
tars_clean_train_long=dl_manager.download_and_extract(_TARS_CLEAN_TRAIN_LONG)
|
127 |
+
tars_clean_test_long=dl_manager.download_and_extract(_TARS_CLEAN_TEST_LONG)
|
128 |
+
tars_clean_dev_long=dl_manager.download_and_extract(_TARS_CLEAN_DEV_LONG)
|
129 |
+
|
130 |
+
tars_other_train_long=dl_manager.download_and_extract(_TARS_OTHER_TRAIN_LONG)
|
131 |
+
tars_other_test_long=dl_manager.download_and_extract(_TARS_OTHER_TEST_LONG)
|
132 |
+
tars_other_dev_long=dl_manager.download_and_extract(_TARS_OTHER_DEV_LONG)
|
133 |
+
|
134 |
+
hash_tar_files=defaultdict(dict)
|
135 |
+
with open(tars_clean_train_short,'r') as f:
|
136 |
+
hash_tar_files['clean_train_short']=[path.replace('\n','') for path in f]
|
137 |
+
with open(tars_clean_test_short,'r') as f:
|
138 |
+
hash_tar_files['clean_test_short']=[path.replace('\n','') for path in f]
|
139 |
+
with open(tars_clean_dev_short,'r') as f:
|
140 |
+
hash_tar_files['clean_dev_short']=[path.replace('\n','') for path in f]
|
141 |
+
|
142 |
+
with open(tars_other_train_short,'r') as f:
|
143 |
+
hash_tar_files['other_train_short']=[path.replace('\n','') for path in f]
|
144 |
+
with open(tars_other_test_short,'r') as f:
|
145 |
+
hash_tar_files['other_test_short']=[path.replace('\n','') for path in f]
|
146 |
+
with open(tars_other_dev_short,'r') as f:
|
147 |
+
hash_tar_files['other_dev_short']=[path.replace('\n','') for path in f]
|
148 |
+
|
149 |
+
|
150 |
+
with open(tars_clean_train_long,'r') as f:
|
151 |
+
hash_tar_files['clean_train_long']=[path.replace('\n','') for path in f]
|
152 |
+
with open(tars_clean_test_long,'r') as f:
|
153 |
+
hash_tar_files['clean_test_long']=[path.replace('\n','') for path in f]
|
154 |
+
with open(tars_clean_dev_long,'r') as f:
|
155 |
+
hash_tar_files['clean_dev_long']=[path.replace('\n','') for path in f]
|
156 |
+
|
157 |
+
with open(tars_other_train_long,'r') as f:
|
158 |
+
hash_tar_files['other_train_long']=[path.replace('\n','') for path in f]
|
159 |
+
with open(tars_other_test_long,'r') as f:
|
160 |
+
hash_tar_files['other_test_long']=[path.replace('\n','') for path in f]
|
161 |
+
with open(tars_other_dev_long,'r') as f:
|
162 |
+
hash_tar_files['other_dev_long']=[path.replace('\n','') for path in f]
|
163 |
+
|
164 |
+
hash_meta_paths={"clean_train_short":metadata_clean_train_short,
|
165 |
+
"clean_test_short":metadata_clean_test_short,
|
166 |
+
"clean_dev_short":metadata_clean_dev_short,
|
167 |
+
"other_train_short":metadata_other_train_short,
|
168 |
+
"other_test_short":metadata_other_test_short,
|
169 |
+
"other_dev_short":metadata_other_dev_short,
|
170 |
+
"clean_train_long":metadata_clean_train_long,
|
171 |
+
"clean_test_long":metadata_clean_test_long,
|
172 |
+
"clean_dev_long":metadata_clean_dev_long,
|
173 |
+
"other_train_long":metadata_other_train_long,
|
174 |
+
"other_test_long":metadata_other_test_long,
|
175 |
+
"other_dev_long":metadata_other_dev_long}
|
176 |
+
|
177 |
+
audio_paths = dl_manager.download(hash_tar_files)
|
178 |
+
|
179 |
+
splits=["clean_train_short","clean_test_short","clean_dev_short","other_train_short","other_test_short","other_dev_short","clean_train_long","clean_test_long","clean_dev_long","other_train_long","other_test_long","other_dev_long"]
|
180 |
+
local_extracted_audio_paths = (
|
181 |
+
dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
|
182 |
+
{
|
183 |
+
split:[None] * len(audio_paths[split]) for split in splits
|
184 |
+
}
|
185 |
+
)
|
186 |
+
|
187 |
+
return [
|
188 |
+
datasets.SplitGenerator(
|
189 |
+
name="clean_train_short",
|
190 |
+
gen_kwargs={
|
191 |
+
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["clean_train_short"]],
|
192 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["clean_train_short"],
|
193 |
+
"metadata_paths": hash_meta_paths["clean_train_short"],
|
194 |
+
}
|
195 |
+
),
|
196 |
+
datasets.SplitGenerator(
|
197 |
+
name="clean_test_short",
|
198 |
+
gen_kwargs={
|
199 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["clean_test_short"]],
|
200 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["clean_test_short"],
|
201 |
+
"metadata_paths": hash_meta_paths["clean_test_short"],
|
202 |
+
}
|
203 |
+
),
|
204 |
+
datasets.SplitGenerator(
|
205 |
+
name="clean_dev_short",
|
206 |
+
gen_kwargs={
|
207 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["clean_dev_short"]],
|
208 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["clean_dev_short"],
|
209 |
+
"metadata_paths": hash_meta_paths["clean_dev_short"],
|
210 |
+
}
|
211 |
+
),
|
212 |
+
datasets.SplitGenerator(
|
213 |
+
name="other_train_short",
|
214 |
+
gen_kwargs={
|
215 |
+
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["other_train_short"]],
|
216 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["other_train_short"],
|
217 |
+
"metadata_paths": hash_meta_paths["other_train_short"],
|
218 |
+
}
|
219 |
+
),
|
220 |
+
datasets.SplitGenerator(
|
221 |
+
name="other_test_short",
|
222 |
+
gen_kwargs={
|
223 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other_test_short"]],
|
224 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["other_test_short"],
|
225 |
+
"metadata_paths": hash_meta_paths["other_test_short"],
|
226 |
+
}
|
227 |
+
),
|
228 |
+
datasets.SplitGenerator(
|
229 |
+
name="other_dev_short",
|
230 |
+
gen_kwargs={
|
231 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other_dev_short"]],
|
232 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["other_dev_short"],
|
233 |
+
"metadata_paths": hash_meta_paths["other_dev_short"],
|
234 |
+
}
|
235 |
+
),
|
236 |
+
datasets.SplitGenerator(
|
237 |
+
name="clean_train_long",
|
238 |
+
gen_kwargs={
|
239 |
+
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["clean_train_long"]],
|
240 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["clean_train_long"],
|
241 |
+
"metadata_paths": hash_meta_paths["clean_train_long"],
|
242 |
+
}
|
243 |
+
),
|
244 |
+
datasets.SplitGenerator(
|
245 |
+
name="clean_test_long",
|
246 |
+
gen_kwargs={
|
247 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["clean_test_long"]],
|
248 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["clean_test_long"],
|
249 |
+
"metadata_paths": hash_meta_paths["clean_test_long"],
|
250 |
+
}
|
251 |
+
),
|
252 |
+
datasets.SplitGenerator(
|
253 |
+
name="clean_dev_long",
|
254 |
+
gen_kwargs={
|
255 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["clean_dev_long"]],
|
256 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["clean_dev_long"],
|
257 |
+
"metadata_paths": hash_meta_paths["clean_dev_long"],
|
258 |
+
}
|
259 |
+
),
|
260 |
+
datasets.SplitGenerator(
|
261 |
+
name="other_train_long",
|
262 |
+
gen_kwargs={
|
263 |
+
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["other_train_long"]],
|
264 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["other_train_long"],
|
265 |
+
"metadata_paths": hash_meta_paths["other_train_long"],
|
266 |
+
}
|
267 |
+
),
|
268 |
+
datasets.SplitGenerator(
|
269 |
+
name="other_test_long",
|
270 |
+
gen_kwargs={
|
271 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other_test_long"]],
|
272 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["other_test_long"],
|
273 |
+
"metadata_paths": hash_meta_paths["other_test_long"],
|
274 |
+
}
|
275 |
+
),
|
276 |
+
datasets.SplitGenerator(
|
277 |
+
name="other_dev_long",
|
278 |
+
gen_kwargs={
|
279 |
+
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other_dev_long"]],
|
280 |
+
"local_extracted_archives_paths": local_extracted_audio_paths["other_dev_long"],
|
281 |
+
"metadata_paths": hash_meta_paths["other_dev_long"],
|
282 |
+
}
|
283 |
+
),
|
284 |
+
]
|
285 |
+
|
286 |
+
def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
|
287 |
+
|
288 |
+
features = ["segment_path","text"]
|
289 |
+
|
290 |
+
with open(metadata_paths) as f:
|
291 |
+
metadata = {x["identifier"]: x for x in csv.DictReader(f, delimiter=",")}
|
292 |
+
|
293 |
+
for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
|
294 |
+
for audio_filename, audio_file in audio_archive:
|
295 |
+
audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
|
296 |
+
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
|
297 |
+
|
298 |
+
yield audio_id, {
|
299 |
+
"identifier": audio_id,
|
300 |
+
**{feature: metadata[audio_id][feature] for feature in features},
|
301 |
+
"audio": {"path": path, "bytes": audio_file.read()},
|
302 |
+
}
|