File size: 5,648 Bytes
b8830cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from collections import defaultdict
import os
import json
import csv
csv.field_size_limit(100000000)

import datasets

_NAME="cv17_es_other_automatically_verified"
_VERSION="1.0.0"
_AUDIO_EXTENSIONS=".mp3"

_DESCRIPTION = """
Split called -other- of the Spanish Common Voice v17.0 that was automatically verified
using various ASR system.
"""

_CITATION = """
@misc{carlosmena2024cv17autoveri,
      title={Spanish Common Voice v17.0 Split Other Automatically Verified}, 
      author={Mena, Carlos},
      publisher={Barcelona Supercomputing Center}
      year={2024},
      url={https://huggingface.co/datasets/projecte-aina/cv17_es_other_automatically_verified},
}
"""

_HOMEPAGE = "https://huggingface.co/datasets/projecte-aina/cv17_es_other_automatically_verified"

_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/"

_BASE_DATA_DIR = "corpus/"

_METADATA_OTHER   = os.path.join(_BASE_DATA_DIR,"files","other.tsv")

_TARS_REPO = os.path.join(_BASE_DATA_DIR,"files","tars_repo.paths")

class CV17EsOtherAutomaticallyVerifiedConfig(datasets.BuilderConfig):
    """BuilderConfig for The Spanish Common Voice v17.0 Split Other Automatically Verified"""

    def __init__(self, name, **kwargs):
        name=_NAME
        super().__init__(name=name, **kwargs)

class CV17EsOtherAutomaticallyVerified(datasets.GeneratorBasedBuilder):
    """Spanish Common Voice v17.0 Split Other Automatically Verified"""

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIGS = [
        CV17EsOtherAutomaticallyVerifiedConfig(
            name=_NAME,
            version=datasets.Version(_VERSION),
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "audio": datasets.Audio(sampling_rate=16000),             
                "client_id": datasets.Value("string"),
                "path": datasets.Value("string"),
                "sentence_id": datasets.Value("string"),
                "sentence": datasets.Value("string"),
                "sentence_domain": datasets.Value("string"),
                "up_votes": datasets.Value("int32"),
                "down_votes": datasets.Value("int32"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accents": datasets.Value("string"),
                "variant": datasets.Value("string"),
                "locale": datasets.Value("string"),
                "segment": datasets.Value("string"),               
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        metadata_other=dl_manager.download_and_extract(_METADATA_OTHER)

        tars_repo=dl_manager.download_and_extract(_TARS_REPO)
       
        hash_tar_files=defaultdict(dict)

        with open(tars_repo,'r') as f:
            hash_tar_files['other']=[path.replace('\n','') for path in f]
                
        hash_meta_paths={"other":metadata_other}

        audio_paths = dl_manager.download(hash_tar_files)
        
        splits=["other"]
        local_extracted_audio_paths = (
            dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
            {
                split:[None] * len(audio_paths[split]) for split in splits
            }
        )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
        return [
            datasets.SplitGenerator(
                name="other",
                gen_kwargs={
                    "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["other"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["other"],
                    "metadata_paths": hash_meta_paths["other"],
                }
            ),
        ]

    def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):

        features = ["client_id","sentence_id","sentence","sentence_domain","up_votes",
                    "down_votes","age","gender", "accents","variant","locale","segment"]
        
        with open(metadata_paths) as f:
            metadata = {x["path"]: x for x in csv.DictReader(f, delimiter="\t")}

        for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
            for audio_filename, audio_file in audio_archive:
                audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
                audio_id=audio_id+_AUDIO_EXTENSIONS
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
                
                try:                        
                        yield audio_id, {
                            "path": audio_id,
                            **{feature: metadata[audio_id][feature] for feature in features},
                            "audio": {"path": path, "bytes": audio_file.read()},
                }
                except:
                        continue