Datasets:
File size: 1,306 Bytes
ad26630 8d2584e 7bd74b5 75e8c2a 0bf796f ad26630 8d2584e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
license: openrail
pretty_name: PubChem 68K
size_categories:
- 10K<n<100K
task_categories:
- image-to-text
dataset_info:
features:
- name: image
dtype: image
- name: smiles
dtype: string
- name: selfies
dtype: string
splits:
- name: train
num_bytes: 1185846198.576
num_examples: 68996
- name: test
num_bytes: 267097779.576
num_examples: 15499
- name: validation
num_bytes: 266912227.912
num_examples: 15499
download_size: 1692942822
dataset_size: 1719856206.064
---
Molecules in this set
* have a molecular weight of fewer than 1500 Daltons,
* not possess counter ions,
* only contain the elements C, H, O, N, P, S, F, Cl, Br, I, Se and B,
* not contain isotopes of Hydrogens (D, T),
* have 3–40 bonds,
* not contain any charged groups including zwitterionic forms,
* only contain implicit hydrogens, except in functional groups,
* have less than 40 SMILES characters,
* no stereochemistry is allowed.
The original dataset from Decimer was imported and randomly sampled. 516x516 sized images were generated using RDKit.
## Reference
> Rajan, Kohulan; Zielesny, Achim; Steinbeck, Christoph (2021): DECIMER 1.0: Deep Learning for Chemical Image Recognition using Transformers. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.14479287.v1 |