Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
ae4f8be
·
verified ·
1 Parent(s): ddeb32d

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +133 -0
README.md CHANGED
@@ -1,4 +1,13 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: corpus
4
  features:
@@ -53,4 +62,128 @@ configs:
53
  data_files:
54
  - split: dev
55
  path: queries/dev-*
 
 
 
56
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - eng
6
+ license: apache-2.0
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-retrieval
10
+ task_ids: []
11
  dataset_info:
12
  - config_name: corpus
13
  features:
 
62
  data_files:
63
  - split: dev
64
  path: queries/dev-*
65
+ tags:
66
+ - mteb
67
+ - text
68
  ---
69
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
70
+
71
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
72
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">HagridRetrieval</h1>
73
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
74
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
75
+ </div>
76
+
77
+ HAGRID (Human-in-the-loop Attributable Generative Retrieval for Information-seeking Dataset)is a dataset for generative information-seeking scenarios. It consists of queriesalong with a set of manually labelled relevant passages
78
+
79
+ | | |
80
+ |---------------|---------------------------------------------|
81
+ | Task category | t2t |
82
+ | Domains | Encyclopaedic, Written |
83
+ | Reference | https://github.com/project-miracl/hagrid |
84
+
85
+
86
+ ## How to evaluate on this task
87
+
88
+ You can evaluate an embedding model on this dataset using the following code:
89
+
90
+ ```python
91
+ import mteb
92
+
93
+ task = mteb.get_tasks(["HagridRetrieval"])
94
+ evaluator = mteb.MTEB(task)
95
+
96
+ model = mteb.get_model(YOUR_MODEL)
97
+ evaluator.run(model)
98
+ ```
99
+
100
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
101
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
102
+
103
+ ## Citation
104
+
105
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
106
+
107
+ ```bibtex
108
+
109
+ @article{hagrid,
110
+ author = {Ehsan Kamalloo and Aref Jafari and Xinyu Zhang and Nandan Thakur and Jimmy Lin},
111
+ journal = {arXiv:2307.16883},
112
+ title = {{HAGRID}: A Human-LLM Collaborative Dataset for Generative Information-Seeking with Attribution},
113
+ year = {2023},
114
+ }
115
+
116
+
117
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
118
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
119
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
120
+ publisher = {arXiv},
121
+ journal={arXiv preprint arXiv:2502.13595},
122
+ year={2025},
123
+ url={https://arxiv.org/abs/2502.13595},
124
+ doi = {10.48550/arXiv.2502.13595},
125
+ }
126
+
127
+ @article{muennighoff2022mteb,
128
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
129
+ title = {MTEB: Massive Text Embedding Benchmark},
130
+ publisher = {arXiv},
131
+ journal={arXiv preprint arXiv:2210.07316},
132
+ year = {2022}
133
+ url = {https://arxiv.org/abs/2210.07316},
134
+ doi = {10.48550/ARXIV.2210.07316},
135
+ }
136
+ ```
137
+
138
+ # Dataset Statistics
139
+ <details>
140
+ <summary> Dataset Statistics</summary>
141
+
142
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
143
+
144
+ ```python
145
+ import mteb
146
+
147
+ task = mteb.get_task("HagridRetrieval")
148
+
149
+ desc_stats = task.metadata.descriptive_stats
150
+ ```
151
+
152
+ ```json
153
+ {
154
+ "dev": {
155
+ "num_samples": 992,
156
+ "number_of_characters": 133142,
157
+ "num_documents": 496,
158
+ "min_document_length": 27,
159
+ "average_document_length": 228.36693548387098,
160
+ "max_document_length": 1205,
161
+ "unique_documents": 496,
162
+ "num_queries": 496,
163
+ "min_query_length": 16,
164
+ "average_query_length": 40.064516129032256,
165
+ "max_query_length": 122,
166
+ "unique_queries": 496,
167
+ "none_queries": 0,
168
+ "num_relevant_docs": 496,
169
+ "min_relevant_docs_per_query": 1,
170
+ "average_relevant_docs_per_query": 1.0,
171
+ "max_relevant_docs_per_query": 1,
172
+ "unique_relevant_docs": 496,
173
+ "num_instructions": null,
174
+ "min_instruction_length": null,
175
+ "average_instruction_length": null,
176
+ "max_instruction_length": null,
177
+ "unique_instructions": null,
178
+ "num_top_ranked": null,
179
+ "min_top_ranked_per_query": null,
180
+ "average_top_ranked_per_query": null,
181
+ "max_top_ranked_per_query": null
182
+ }
183
+ }
184
+ ```
185
+
186
+ </details>
187
+
188
+ ---
189
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*