Twi
stringlengths 1
485
| sentiment
stringclasses 2
values |
---|---|
Nyansa mu na woyɛɛ ne nyinaa;
|
Positive
|
alo yɛngɛ sone,
|
Negative
|
Wosɛe wɔn a wɔnni wo nokorɛ nyinaa.
|
Negative
|
Akatua bɛn na ɔde bɛma wɔn a wɔde gyidi som no?
|
Positive
|
mepɛ Onyankopɔn ho nimdeɛ sen ɔhyew afɔre.
|
Positive
|
na woahu nnebɔneyɛfo asotwe.
|
Negative
|
Hwɛ, me nkoa ani begye, na mo de, mo ani bewu.
|
Negative
|
Nyansa mu na woyɛɛ ne nyinaa;
|
Positive
|
Wɔabɔ dɔnkoro ne fa.
|
Positive
|
na woahunu nnebɔneyɛfoɔ asotwe.
|
Negative
|
Nhyira ne wɔn a wonhui na wogye di.
|
Positive
|
Wosii gyinae sɛ wobebu wɔn ani agu nea wɔn Bɔfo no pɛ so, na wotwaa so aba.
|
Positive
|
Mmm hwana ɔbɔɔ realer no,
|
Negative
|
Mmm hwana ɔbɔɔ realer no,
|
Negative
|
na amumɔyɛfo bɛsan aba wo nkyɛn.
|
Positive
|
wo nokwaredi mu, sɛe wɔn.
|
Negative
|
ɔbɛdwerɛ ahemfo wɔ nʼabufuhyeɛ da no.
|
Negative
|
Nyamenle di nwolɛ ɛzonle ɔ?
|
Negative
|
Eyi akyi no, ɔmaa atemmufo dii wɔn so kosii sɛ odiyifo Samuel bae.
|
Positive
|
asase so nnipa a wɔn akatua wɔ nkwa yi mu.
|
Positive
|
'Teefo na Onyankopɔn ne wɔn di atirimsɛm.'
|
Positive
|
Nanso, deɛ ɔsene Salomo no wɔ ha.
|
Positive
|
Nanso mo de, nea ɔpɛ sɛ ɔyɛ mo so panyin no nyɛ sɛ mo mu akumaa, na nea odi mo so no nso nyɛ mo mu somfo.
|
Positive
|
Saa mfeɛ aduanan yi nyinaa mu, Awurade aka mo ho na hwee ho anhia mo.
|
Positive
|
na ɔsram renhyerɛn;
|
Negative
|
Mɔlebɛbo ne, ɛnee ɛzoanvolɛma ne ɛnlie ɛnli kɛ Gyisɛse ɔ.
|
Negative
|
Dɔnhwere baako pɛ mu, wʼatemmuo aba.'
|
Negative
|
na amumɔyɛfo bɛsan aba wo nkyɛn.
|
Positive
|
ɔbɛdwerɛw ahemfo wɔ nʼabufuwhyew da no.
|
Negative
|
Mede ama Lot asefoɔ sɛ agyapadeɛ."
|
Positive
|
Yei nti na da biara wobɛhu Ananse na waka padeɛ mu no.
|
Positive
|
Onyankopɔn atirimpɔw a ɔwɔ ma asase ne adesamma no, na minnim ho hwee.
|
Negative
|
Emu na ɔtreneeni guan kɔ, na onya ahobammɔ."
|
Positive
|
Da biara mu bɔne ankasa dɔɔso ma da no."
|
Negative
|
Na mmarima baanu yi de yɛɛ apam.
|
Positive
|
Wow akaasoka,
|
Positive
|
Monsakra mo adwene na munnye Asɛmpa no nni!"
|
Positive
|
na ɛnyɛ akofena anofanu wɔ wɔn nsam,
|
Positive
|
Nwoma nko, nyansa nko.
|
Positive
|
Yɛ eyinom na wubenya nkwa."
|
Positive
|
"O mpaebɔ Tiefo, wo nkyɛn na nnipa a wofi mmaa nyinaa bɛba."
|
Positive
|
na mato me bɛmma awowɔ wɔn.
|
Positive
|
alo yɛngɛ sone,
|
Negative
|
Eyi bɛma mo nnɔbae so ato.
|
Positive
|
na wode nneɛma a ɛyɛ duru too yɛn akyi.
|
Negative
|
So asase nyinaa temmufo no renyɛ nea ɛteɛ anaa?'
|
Negative
|
"Na sɛ mokɔ kurow biara mu na wogye mo fɛw so a, aduan biara a wɔde bɛma mo no, munni.
|
Positive
|
Nwoma nko, nyansa nko.
|
Positive
|
ne n'asomdwoe no nka yen;
|
Positive
|
Da biara mu bɔne ankasa dɔɔso ma da no."
|
Positive
|
Kɛ neazo la, Gyihova hanle kɛ, bɛpɛ mrenyia ne mɔ kɔsɔɔti mrenyiazo na ɛnee ɛhye bamaa bɛayɛ bɛtɛɛ wɔ kenle dɔɔnwo anu.
|
Positive
|
Eyi bue kwan ma Samariafo pii bɛyɛ gyidifo.
|
Positive
|
obiara nni nimdeɛ anaa nhunumu a ɔde bɛka sɛ,
|
Negative
|
So wɔyɛ nkurɔfo ayayade wɔ Gehenna?
|
Negative
|
Kenkan Onyankopɔn Asɛm da biara da, na wɛn ma mpaebɔ.
|
Positive
|
Pam wɔn; esiane wɔn bɔne dodow no nti,
|
Negative
|
Nhyira ne wɔn a wonhui na wogye di.
|
Positive
|
Na ɛhe ne Yuda sorɔnsorɔmmea?
|
Positive
|
Enti wɔnnyɛ agyidifo.
|
Positive
|
na amumɔyɛfo bɛsan aba wo nkyɛn.
|
Positive
|
Woaka aborɔme bi akyerɛ me nkurɔfo, nanso wonkyerɛɛ me ase."
|
Negative
|
Biribiara mu, O Awurade, woyɛ ɔnokwafo.
|
Positive
|
Wɔabɔ dɔnkoro ne fa.
|
Negative
|
Fa Fa Twins,
|
Negative
|
Anadwo yi, wobegye wo kra afi wo nsam, na hena na nneɛma bebree a woapɛ agu hɔ yi, wode begyaw no?'
|
Negative
|
Wɔabɔ dɔnkoro ne fa.
|
Positive
|
"Yi da bi to hɔ a wɔde bɛyɛ akɔnkyen, na ma Nabot ntena anuonyambea wɔ nnipa no mu.
|
Positive
|
Nhyira ne wɔn a wonhui na wogye di.
|
Positive
|
nʼanwanwadeɛ akyi no, wɔannye anni.
|
Negative
|
Na ma wɔn ko-ma nni a-h'ru-si.
|
Negative
|
Obi wɔ mo mu a onim nyansa na ɔwɔ ntease?
|
Positive
|
ogya a ɛhyew nneɛma di nʼanim,
|
Positive
|
ogya a ɛhyew nneɛma di nʼanim,
|
Positive
|
mpo ɔbɛyɛ yɛn kwankyerɛfoɔ akɔsi awieeɛ.
|
Positive
|
"Mɛbɔ wɔn ho ban afi wɔn a wɔhaw wɔn no ho."
|
Positive
|
Wo a wutwa nkontompo nko ara.
|
Negative
|
Onyankopɔn Asɛm ka sɛ: "Noa ne nokware Nyankopɔn nantewee."
|
Positive
|
Nyansa mu na woyɛɛ ne nyinaa; w'abɔde ahyɛ asase so ma.
|
Positive
|
Sɛdeɛ Atwerɛsɛm no ka no, ɔteneneeni firi gyidie mu bɛnya nkwa.
|
Positive
|
Odiyifo bi wɔ hɔ a mo agyanom antaa no anaa?
|
Negative
|
ne Yuda nkurow nyinaa so.
|
Positive
|
Na nkɔmhyɛni no ne n'apamfoɔ pii ahyɛ afiase abosome bebree.
|
Negative
|
Nhyira ne wɔn a wonhui na wogye di.
|
Positive
|
Nhyira nka wɔn a wotie adiyisɛm a ɛwɔ saa nhoma yi mu no!"
|
Positive
|
Na afei ɛdeɛn na wobɛyɛ de ahyɛ wo din kɛseɛ a ɛwɔ animuonyam no?"
|
Positive
|
Onyankopɔn biara nni hɔ te sɛ ɔno.'
|
Negative
|
"Saa nsɛnkyerɛnne yi bedi wɔn a wogye me di no akyi.
|
Positive
|
Anaa Onyankopɔn na ɔbɔɔ no?
|
Negative
|
Anaa Onyankopɔn na ɔbɔɔ no?
|
Negative
|
Enti ɔkyerɛwee sɛ: "Wo a wokyerɛkyerɛ obi no, wonkyerɛkyerɛ wo ho?"
|
Negative
|
"Ne honhom fi ne mu, na ɔsan kɔ dɔte mu; da no ara, ne nsusuwii yera."
|
Negative
|
Adɛn nti na Onyankopɔn bɔɔ no?"
|
Negative
|
Sɛ meka asase yi so nsɛm kyerɛ mo na munnye nni a, ɛbɛyɛ dɛn na sɛ meka ɔsoro nsɛm kyerɛ mo a, mubegye adi?
|
Negative
|
'Teefo na Onyankopɔn ne wɔn di atirimsɛm.'
|
Positive
|
wo nsam wɔ ahoɔden, wama wo nsa nifa so.
|
Positive
|
deɛ ɔnwonoo wo, na ɔyɛɛ wo wɔ awotwaa mu,
|
Positive
|
Na sɛ wutie m'asɛm a, wubenyin akyɛ paa.'
|
Negative
|
na mato me bɛmma awowɔ wɔn.
|
Positive
|
Nanso Onyankopɔn bɔɔ saa nnuan no sɛ, sɛ gyidifo a wɔahu nokware no nsa ka na wɔbɔ so mpae a, wotumi di.
|
Negative
|
Wosɛe wɔn a wɔnni wo nokorɛ nyinaa.
|
Negative
|
Twi Sentiments Dataset
This dataset contains over 1.3 million Twi sentences with binary sentiment classifications, designed to support the development of robust sentiment analysis models for the Twi language.
Dataset Information
- Language: Twi (Akan)
- Task: Binary sentiment classification
- Size: 1,383,615 examples
- Format: CSV
- Columns:
Twi
: Text in Twi languagesentiment
: Binary sentiment label (positive/negative)
Dataset Statistics
- Total examples: 1,383,615
- Dataset size: 76.8 MB
- Download size: 46.0 MB
- Split: Training set only
Usage Example
from datasets import load_dataset
# Load the dataset from the Hugging Face Hub
dataset = load_dataset("michsethowusu/twi-sentiments-corpus")
# Access the training split
train_data = dataset["train"]
# Print first example
print(f"Text: {train_data[0]['Twi']}")
print(f"Sentiment: {train_data[0]['sentiment']}")
# Get dataset info
print(f"Total examples: {len(train_data)}")
Applications
- Sentiment Analysis: Train models to classify sentiment in Twi text
- African Language NLP: Support research in low-resource language processing
- Cross-lingual Studies: Compare sentiment patterns across languages
- Social Media Analysis: Analyze sentiment in Ghanaian social media content
- Opinion Mining: Extract opinions from Twi text data
Data Quality
This corpus has been curated to provide a substantial resource for Twi sentiment analysis research. The dataset aims to capture diverse expressions of sentiment in the Twi language to enable the creation of robust and generalizable models.
Citation
If you use this dataset in your research, please cite:
@dataset{twi_sentiments_2024,
title={Twi Sentiments Corpus: A Large-Scale Sentiment Classification Dataset for Twi},
author={[Author Name]},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/datasets/michsethowusu/twi-sentiments-corpus}
}
License
This dataset is made available for research purposes. Please ensure proper attribution when using this dataset in your work.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository or contact the maintainers.
Contributing to African Language NLP Research
This dataset is part of ongoing efforts to advance natural language processing capabilities for African languages, particularly Twi. I encourage researchers to use this resource to develop better sentiment analysis tools for the Twi-speaking community.
- Downloads last month
- 21