michsethowusu commited on
Commit
e21d1de
·
verified ·
1 Parent(s): 43626fa

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ dataset_info:
5
+ features:
6
+ - name: score
7
+ dtype: float32
8
+ - name: Fulah
9
+ dtype: string
10
+ - name: Oromo
11
+ dtype: string
12
+ splits:
13
+ - name: train
14
+ num_bytes: 15185752
15
+ num_examples: 92794
16
+ download_size: 15185752
17
+ dataset_size: 15185752
18
+ configs:
19
+ - config_name: default
20
+ data_files:
21
+ - split: train
22
+ path: Fulah-Oromo_Sentence-Pairs.csv
23
+
24
+ ---
25
+ # Fulah-Oromo_Sentence-Pairs Dataset
26
+
27
+ This dataset contains sentence pairs for African languages along with similarity scores. It can be used for machine translation, sentence alignment, or other natural language processing tasks.
28
+
29
+ This dataset is based on the NLLBv1 dataset, published on OPUS under an open-source initiative led by META. You can find more information here: [OPUS - NLLB-v1](https://opus.nlpl.eu/legacy/NLLB-v1.php)
30
+
31
+ ## Metadata
32
+ - **File Name**: Fulah-Oromo_Sentence-Pairs
33
+ - **Number of Rows**: 92794
34
+ - **Number of Columns**: 3
35
+ - **Columns**: score, Fulah, Oromo
36
+
37
+ ## Dataset Description
38
+
39
+ The dataset contains sentence pairs in African languages with an associated similarity score. Each row consists of three columns:
40
+ 1. `score`: The similarity score between the two sentences (range from 0 to 1).
41
+ 2. `Fulah`: The first sentence in the pair (language 1).
42
+ 3. `Oromo`: The second sentence in the pair (language 2).
43
+
44
+ This dataset is intended for use in training and evaluating machine learning models for tasks like translation, sentence similarity, and cross-lingual transfer learning.
45
+
46
+ ## References
47
+
48
+ Below are papers related to how the data was collected and used in various multilingual and cross-lingual applications:
49
+
50
+ [1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017
51
+
52
+ [2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018.
53
+
54
+ [3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018
55
+
56
+ [4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018.
57
+
58
+ [5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018.
59
+
60
+ [6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018.
61
+
62
+ [7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019.
63
+
64
+ [8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB
65
+
66
+ [9] Paul-Ambroise Duquenne, Hongyu Gong, Holger Schwenk, Multimodal and Multilingual Embeddings for Large-Scale Speech Mining, NeurIPS 2021, pages 15748-15761.
67
+
68
+ [10] Kevin Heffernan, Onur Celebi, and Holger Schwenk, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
69
+