LAFAN1_Retargeting_Dataset / rerun_visualize.py
lvhaidong's picture
Upload 218 files
07ff884 verified
raw
history blame
5.83 kB
import argparse
import time
import numpy as np
import pinocchio as pin
import rerun as rr
import trimesh
class RerunURDF():
def __init__(self, robot_type):
self.name = robot_type
match robot_type:
case 'g1':
self.robot = pin.RobotWrapper.BuildFromURDF('robot_description/g1/g1_29dof_rev_1_0.urdf', 'robot_description/g1', pin.JointModelFreeFlyer())
self.Tpose = np.array([0,0,0.785,0,0,0,1,
-0.15,0,0,0.3,-0.15,0,
-0.15,0,0,0.3,-0.15,0,
0,0,0,
0, 1.57,0,1.57,0,0,0,
0,-1.57,0,1.57,0,0,0]).astype(np.float32)
case 'h1_2':
self.robot = pin.RobotWrapper.BuildFromURDF('robot_description/h1_2/h1_2_wo_hand.urdf', 'robot_description/h1_2', pin.JointModelFreeFlyer())
assert self.robot.model.nq == 7 + 12+1+14
self.Tpose = np.array([0,0,1.02,0,0,0,1,
0,-0.15,0,0.3,-0.15,0,
0,-0.15,0,0.3,-0.15,0,
0,
0, 1.57,0,1.57,0,0,0,
0,-1.57,0,1.57,0,0,0]).astype(np.float32)
case 'h1':
self.robot = pin.RobotWrapper.BuildFromURDF('robot_description/h1/h1.urdf', 'robot_description/h1', pin.JointModelFreeFlyer())
assert self.robot.model.nq == 7 + 10+1+8
self.Tpose = np.array([0,0,1.03,0,0,0,1,
0,0,-0.15,0.3,-0.15,
0,0,-0.15,0.3,-0.15,
0,
0, 1.57,0,1.57,
0,-1.57,0,1.57]).astype(np.float32)
case _:
print(robot_type)
raise ValueError('Invalid robot type')
# print all joints names
# for i in range(self.robot.model.njoints):
# print(self.robot.model.names[i])
self.link2mesh = self.get_link2mesh()
self.load_visual_mesh()
self.update()
def get_link2mesh(self):
link2mesh = {}
for visual in self.robot.visual_model.geometryObjects:
mesh = trimesh.load_mesh(visual.meshPath)
name = visual.name[:-2]
mesh.visual = trimesh.visual.ColorVisuals()
mesh.visual.vertex_colors = visual.meshColor
link2mesh[name] = mesh
return link2mesh
def load_visual_mesh(self):
self.robot.framesForwardKinematics(pin.neutral(self.robot.model))
for visual in self.robot.visual_model.geometryObjects:
frame_name = visual.name[:-2]
mesh = self.link2mesh[frame_name]
frame_id = self.robot.model.getFrameId(frame_name)
parent_joint_id = self.robot.model.frames[frame_id].parent
parent_joint_name = self.robot.model.names[parent_joint_id]
frame_tf = self.robot.data.oMf[frame_id]
joint_tf = self.robot.data.oMi[parent_joint_id]
rr.log(f'urdf_{self.name}/{parent_joint_name}',
rr.Transform3D(translation=joint_tf.translation,
mat3x3=joint_tf.rotation,
axis_length=0.01))
relative_tf = joint_tf.inverse() * frame_tf
mesh.apply_transform(relative_tf.homogeneous)
rr.log(f'urdf_{self.name}/{parent_joint_name}/{frame_name}',
rr.Mesh3D(
vertex_positions=mesh.vertices,
triangle_indices=mesh.faces,
vertex_normals=mesh.vertex_normals,
vertex_colors=mesh.visual.vertex_colors,
albedo_texture=None,
vertex_texcoords=None,
),
static=True)
def update(self, configuration = None):
self.robot.framesForwardKinematics(self.Tpose if configuration is None else configuration)
for visual in self.robot.visual_model.geometryObjects:
frame_name = visual.name[:-2]
frame_id = self.robot.model.getFrameId(frame_name)
parent_joint_id = self.robot.model.frames[frame_id].parent
parent_joint_name = self.robot.model.names[parent_joint_id]
joint_tf = self.robot.data.oMi[parent_joint_id]
rr.log(f'urdf_{self.name}/{parent_joint_name}',
rr.Transform3D(translation=joint_tf.translation,
mat3x3=joint_tf.rotation,
axis_length=0.01))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--file_name', type=str, help="File name", default='dance1_subject2')
parser.add_argument('--robot_type', type=str, help="Robot type", default='g1')
args = parser.parse_args()
rr.init(
'Reviz',
spawn=True
)
rr.log('', rr.ViewCoordinates.RIGHT_HAND_Z_UP, static=True)
file_name = args.file_name
robot_type = args.robot_type
csv_files = robot_type + '/' + file_name + '.csv'
data = np.genfromtxt(csv_files, delimiter=',')
rerun_urdf = RerunURDF(robot_type)
for frame_nr in range(data.shape[0]):
rr.set_time_sequence('frame_nr', frame_nr)
configuration = data[frame_nr, :]
rerun_urdf.update(configuration)
time.sleep(0.03)