File size: 7,160 Bytes
e250e6c 09d032f e250e6c 09d032f e250e6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import json
import os
import datasets
from datasets import DatasetInfo, DownloadManager
class DuReaderConfig(datasets.BuilderConfig):
"""Config for DuReader dataset"""
def __init__(self, name, data_url, **kwargs):
super().__init__(name=name, version=datasets.Version("1.0.0", ""))
self.data_url = data_url
class DuReader(datasets.GeneratorBasedBuilder):
""" """
BUILDER_CONFIGS = [
DuReaderConfig(
name="robust",
data_url="https://dataset-bj.cdn.bcebos.com/qianyan/dureader_robust-data.tar.gz",
),
DuReaderConfig(
name="checklist",
data_url="https://dataset-bj.cdn.bcebos.com/qianyan/dureader_checklist-data.tar.gz",
),
# DuReaderConfig(
# name="yesno",
# data_url="https://dataset-bj.cdn.bcebos.com/qianyan/dureader_yesno-data.tar.gz",
# ),
]
def _info(self) -> DatasetInfo:
if self.config.name == "robust":
features = {
"id": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
return datasets.DatasetInfo(
description="",
citation="",
homepage="",
features=datasets.Features(features),
)
if self.config.name == "checklist":
features = {
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"context": datasets.Value("string"),
"question": datasets.Value("string"),
"is_impossible": datasets.Value("bool"),
"answers": datasets.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
}
return datasets.DatasetInfo(
description="",
citation="",
homepage="",
features=datasets.Features(features),
)
return None
def _split_generators(self, dl_manager: DownloadManager):
"""Split generators"""
def _build(train_files, valid_files, test_files):
train_split = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": train_files,
"split": "train",
},
)
valid_split = datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": valid_files,
"split": "dev",
},
)
test_split = datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": test_files,
"split": "test",
},
)
return [train_split, valid_split, test_split]
if self.config.name == "robust":
dl_dir = dl_manager.download_and_extract(self.config.data_url)
splits = _build(
train_files=os.path.join(dl_dir, "train.json"),
valid_files=os.path.join(dl_dir, "dev.json"),
test_files=os.path.join(dl_dir, "test.json"),
)
return splits
if self.config.name == "checklist":
dl_dir = dl_manager.download_and_extract(self.config.data_url)
splits = _build(
train_files=os.path.join(dl_dir, "train.json"),
valid_files=os.path.join(dl_dir, "dev.json"),
test_files=os.path.join(dl_dir, "test.json"),
)
return splits
return []
def _generate_examples(self, data_file, split):
if self.config.name == "robust":
if split == "train" or split == "dev":
return self._generate_robust_examples(data_file)
return self._generate_robust_test_examples(data_file)
if self.config.name == "checklist":
if split == "train" or split == "dev":
return self._generate_checklist_examples(data_file)
return self._generate_checklist_test_examples(data_file)
return None, None
def _generate_robust_examples(self, data_file):
with open(data_file, mode="rt", encoding="utf-8") as fin:
data = json.load(fin)["data"]
for d in data:
for p in d["paragraphs"]:
context = p["context"]
for qa in p["qas"]:
example = {
"id": qa["id"],
"context": context,
"question": qa["question"],
"answers": qa["answers"],
}
yield example["id"], example
def _generate_robust_test_examples(self, data_file):
with open(data_file, mode="rt", encoding="utf-8") as fin:
data = json.load(fin)["data"]
for d in data:
for p in d["paragraphs"]:
context = p["context"]
for qa in p["qas"]:
example = {
"id": qa["id"],
"context": context,
"question": qa["question"],
}
yield example["id"], example
def _generate_checklist_examples(self, data_file):
with open(data_file, mode="rt", encoding="utf-8") as fin:
data = json.load(fin)["data"]
for d in data:
for p in d["paragraphs"]:
title = p["title"]
context = p["context"]
for qa in p["qas"]:
example = {
"id": qa["id"],
"title": title,
"context": context,
"question": qa["question"],
"is_impossible": qa["is_impossible"],
"answers": qa["answers"],
"type": qa["type"],
}
yield example["id"], example
def _generate_checklist_test_examples(self, data_file):
with open(data_file, mode="rt", encoding="utf-8") as fin:
data = json.load(fin)["data"]
for d in data:
for p in d["paragraphs"]:
title = p["title"]
context = p["context"]
for qa in p["qas"]:
example = {
"id": qa["id"],
"title": title,
"context": context,
"question": qa["question"],
}
yield example["id"], example
|