Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Portuguese
Size:
1K - 10K
License:
# Copyright 2023 Andre Barbosa, Igor Cataneo Silveira & The HuggingFace Datasets Authors | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import csv | |
import math | |
import os | |
import re | |
from pathlib import Path | |
import datasets | |
import numpy as np | |
import pandas as pd | |
from multiprocessing import Pool, cpu_count | |
from bs4 import BeautifulSoup | |
from tqdm.auto import tqdm | |
RANDOM_STATE = 42 | |
np.random.seed(RANDOM_STATE) # Set the seed | |
_CITATION = """ | |
@inproceedings{silveira-etal-2024-new, | |
title = "A New Benchmark for Automatic Essay Scoring in {P}ortuguese", | |
author = "Silveira, Igor Cataneo and | |
Barbosa, Andr{\'e} and | |
Mau{\'a}, Denis Deratani", | |
editor = "Gamallo, Pablo and | |
Claro, Daniela and | |
Teixeira, Ant{\'o}nio and | |
Real, Livy and | |
Garcia, Marcos and | |
Oliveira, Hugo Goncalo and | |
Amaro, Raquel", | |
booktitle = "Proceedings of the 16th International Conference on Computational Processing of Portuguese - Vol. 1", | |
month = mar, | |
year = "2024", | |
address = "Santiago de Compostela, Galicia/Spain", | |
publisher = "Association for Computational Lingustics", | |
url = "https://aclanthology.org/2024.propor-1.23/", | |
pages = "228--237" | |
} | |
""" | |
_DESCRIPTION = """\ | |
This dataset was created as part of our work on advancing Automatic Essay Scoring for | |
Brazilian Portuguese. It comprises a large collection of publicly available essays | |
collected from websites simulating University Entrance Exams, with a subset expertly | |
annotated to provide reliable assessment indicators. The dataset includes both the raw | |
text and processed forms of the essays, along with supporting prompts and supplemental | |
texts. | |
Key Features: | |
- A diverse corpus of essays with detailed annotations. | |
- A subset graded by expert annotators to evaluate essay quality and task difficulty. | |
- Comprehensive metadata providing provenance and context for each essay. | |
- An empirical analysis framework to support state-of-the-art predictive modeling. | |
For further details, please refer to the paper “A New Benchmark for Automatic Essay | |
Scoring in Portuguese” available at https://aclanthology.org/2024.propor-1.23/. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
_URLS = { | |
"sourceAOnly": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz", | |
"sourceAWithGraders": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceAWithGraders.tar.gz", | |
"sourceB": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/sourceB.tar.gz", | |
"PROPOR2024": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/propor2024.tar.gz", | |
"gradesThousand": "https://huggingface.co/datasets/kamel-usp/aes_enem_dataset/resolve/main/scrapedGradesThousand.tar.gz", | |
} | |
PROMPTS_TO_IGNORE = [ | |
"brasileiros-tem-pessima-educacao-argumentativa-segundo-cientista", | |
"carta-convite-discutir-discriminacao-na-escola", | |
"informacao-no-rotulo-de-produtos-transgenicos", | |
] | |
# Essays to Ignore | |
ESSAY_TO_IGNORE = [ | |
"direitos-em-conflito-liberdade-de-expressao-e-intimidade/2.html", | |
"terceirizacao-avanco-ou-retrocesso/2.html", | |
"artes-e-educacao-fisica-opcionais-ou-obrigatorias/2.html", | |
"violencia-e-drogas-o-papel-do-usuario/0.html", | |
"internacao-compulsoria-de-dependentes-de-crack/0.html", | |
] | |
CSV_HEADER = [ | |
"id", | |
"id_prompt", | |
"prompt", | |
"supporting_text", | |
"title", | |
"essay", | |
"grades", | |
"general", | |
"specific", | |
"essay_year", | |
"reference", | |
] | |
CSV_HEADERPROPOR = [ | |
"id", | |
"id_prompt", | |
"title", | |
"essay", | |
"grades", | |
"essay_year", | |
"reference", | |
] | |
CSV_HEADERTHOUSAND = [ | |
"id", | |
"author", | |
"id_prompt", | |
"essay_year", | |
"grades", | |
"essay", | |
"source", | |
"supporting_text", | |
"prompt", | |
] | |
CSV_HEADER_JBCS25 = [ | |
"id", | |
"id_prompt", | |
"essay_text", | |
"grades", | |
"essay_year", | |
"supporting_text", | |
"prompt", | |
"reference", | |
] | |
SOURCE_A_DESC = """ | |
SourceA have 860 essays available from August 2015 to March 2020. | |
For each month of that period, a new prompt together with supporting texts were given, | |
and the graded essays from the previous month were made available. | |
Of the 56 prompts, 12 had no associated essays available (at the time of download). | |
Additionally, there were 3 prompts that asked for a text in the format of a letter. | |
We removed those 15 prompts and associated texts from the corpus. | |
For an unknown reason, 414 of the essays were graded using a five-point scale of either | |
{0, 50, 100, 150, 200} or its scaled-down version going from 0 to 2. | |
To avoid introducing bias, we also discarded such instances, resulting in a dataset of | |
386 annotated essays with prompts and supporting texts (with each component being clearly identified). | |
Some of the essays used a six-point scale with 20 points instead of 40 points as the second class. | |
As we believe this introduces minimal bias, we kept such essays and relabeled class 20 as class 40. | |
The original data contains comments from the annotators explaining their per-competence scores. | |
They are included in our dataset. | |
""" | |
SOURCE_A_WITH_GRADERS = """ | |
sourceAWithGraders includes the original dataset augmented with grades from additional reviewers. | |
Each essay is replicated three times: | |
1. The original essay with its grades from the website. | |
2. The same essay with grades from the first human grader. | |
3. The same essay with grades from the second human grader. | |
""" | |
SOURCE_B_DESC = """ | |
SourceB is very similar to Source A: a new prompt and supporting texts are made | |
available every month along with the graded essays submitted in the previous month. | |
We downloaded HTML sources from 7,700 essays from May 2009 to May 2023. Essays released | |
prior to June 2016 were graded on a five-point scale and consequently discarded. | |
This resulted in a corpus of approx. 3,200 graded essays on 83 different prompts. | |
Although in principle, Source B also provides supporting texts for students, none were | |
available at the time the data was downloaded. | |
To mitigate this, we extracted supporting texts from the Essay-Br corpus, whenever | |
possible, by manually matching prompts between the two corpora. | |
We ended up with approx. 1,000 essays containing both prompt and supporting texts, and | |
approx. 2,200 essays containing only the respective prompt. | |
""" | |
PROPOR2024 = """ | |
This split corresponds to the results reported in the PROPOR 2024 paper. While reproducibility was | |
fixed in the sourceAWithGraders configuration, this split preserves the original | |
distribution of prompts and scores as used in the paper. | |
""" | |
GRADES_THOUSAND = """ | |
TODO | |
""" | |
JBCS2025 = """ | |
TODO | |
""" | |
class AesEnemDataset(datasets.GeneratorBasedBuilder): | |
""" | |
AES Enem Dataset. For full explanation about generation process, please refer to: https://aclanthology.org/2024.propor-1.23/ | |
We realized in our experiments that there was an issue in the determistic process regarding how the dataset is generated. | |
To reproduce results from PROPOR paper, please refer to "PROPOR2024" config. Other configs are reproducible now. | |
""" | |
VERSION = datasets.Version("1.0.0") | |
# You will be able to load one or the other configurations in the following list with | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="sourceAOnly", version=VERSION, description=SOURCE_A_DESC | |
), | |
datasets.BuilderConfig( | |
name="sourceAWithGraders", | |
version=VERSION, | |
description=SOURCE_A_WITH_GRADERS, | |
), | |
datasets.BuilderConfig( | |
name="sourceB", | |
version=VERSION, | |
description=SOURCE_B_DESC, | |
), | |
datasets.BuilderConfig( | |
name="PROPOR2024", version=VERSION, description=PROPOR2024 | |
), | |
datasets.BuilderConfig( | |
name="gradesThousand", version=VERSION, description=GRADES_THOUSAND | |
), | |
datasets.BuilderConfig(name="JBCS2025", version=VERSION, description=JBCS2025), | |
] | |
def _info(self): | |
if self.config.name == "PROPOR2024": | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"id_prompt": datasets.Value("string"), | |
"essay_title": datasets.Value("string"), | |
"essay_text": datasets.Value("string"), | |
"grades": datasets.Sequence(datasets.Value("int16")), | |
"essay_year": datasets.Value("int16"), | |
"reference": datasets.Value("string"), | |
} | |
) | |
elif self.config.name == "gradesThousand": | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"id_prompt": datasets.Value("string"), | |
"supporting_text": datasets.Value("string"), | |
"prompt": datasets.Value("string"), | |
"essay_text": datasets.Value("string"), | |
"grades": datasets.Sequence(datasets.Value("int16")), | |
"essay_year": datasets.Value("int16"), | |
"source": datasets.Value("string"), | |
} | |
) | |
elif self.config.name == "JBCS2025": | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"id_prompt": datasets.Value("string"), | |
"essay_text": datasets.Value("string"), | |
"grades": datasets.Sequence(datasets.Value("int16")), | |
"essay_year": datasets.Value("int16"), | |
"supporting_text": datasets.Value("string"), | |
"prompt": datasets.Value("string"), | |
"reference": datasets.Value("string"), | |
} | |
) | |
else: | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"id_prompt": datasets.Value("string"), | |
"prompt": datasets.Value("string"), | |
"supporting_text": datasets.Value("string"), | |
"essay_title": datasets.Value("string"), | |
"essay_text": datasets.Value("string"), | |
"grades": datasets.Sequence(datasets.Value("int16")), | |
"essay_year": datasets.Value("int16"), | |
"general_comment": datasets.Value("string"), | |
"specific_comment": datasets.Value("string"), | |
"reference": datasets.Value("string"), | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _post_process_dataframe(self, filepath): | |
def map_year(year): | |
if year <= 2017: | |
return "<=2017" | |
return str(year) | |
def normalize_grades(grades): | |
grades = grades.strip("[]").split(", ") | |
grade_mapping = {"0.0": 0, "20": 40, "2.0": 2} | |
# We will remove the rows that match the criteria below | |
if any( | |
single_grade | |
in grades[:-1] # we ignore the sum, and only check the concetps | |
for single_grade in ["50", "100", "150", "0.5", "1.0", "1.5"] | |
): | |
return None | |
# Use the mapping to transform grades, ignoring the last grade | |
mapped_grades = [ | |
int(grade_mapping.get(grade_concept, grade_concept)) | |
for grade_concept in grades[:-1] | |
] | |
# Calculate and append the sum of the mapped grades as the last element | |
mapped_grades.append(sum(mapped_grades)) | |
return mapped_grades | |
df = pd.read_csv(filepath) | |
df["general"] = df["general"].fillna("") | |
df["essay_year"] = df["essay_year"].astype("int") | |
df["mapped_year"] = df["essay_year"].apply(map_year) | |
df["grades"] = df["grades"].apply(normalize_grades) | |
df = df.dropna(subset=["grades"]) | |
df = df[ | |
~(df["id_prompt"] + "/" + df["id"]).isin(ESSAY_TO_IGNORE) | |
] # arbitrary removal of zero graded essays | |
df.to_csv(filepath, index=False) | |
def _preprocess_propor2024(self, base_path: str): | |
for split_case in ["train.csv", "validation.csv", "test.csv"]: | |
filepath = f"{base_path}/propor2024/{split_case}" | |
df = pd.read_csv(filepath) | |
# Dictionary to track how many times we've seen each (id, id_prompt) pair | |
counts = {} | |
# List to store the reference for each row | |
references = [] | |
# Define the mapping for each occurrence | |
occurrence_to_reference = { | |
0: "crawled_from_web", | |
1: "grader_a", | |
2: "grader_b", | |
} | |
# Iterate through rows in the original order | |
for _, row in df.iterrows(): | |
key = (row["id"], row["id_prompt"]) | |
count = counts.get(key, 0) | |
# Assign the reference based on the count | |
ref = occurrence_to_reference.get(count, "unknown") | |
references.append(ref) | |
counts[key] = count + 1 | |
# Add the reference column without changing the order of rows | |
df["reference"] = references | |
df.to_csv(filepath, index=False) | |
def _split_generators(self, dl_manager): | |
if self.config.name != "JBCS2025": | |
urls = _URLS[self.config.name] | |
extracted_files = dl_manager.download_and_extract({self.config.name: urls}) | |
if "PROPOR2024" == self.config.name: | |
base_path = extracted_files["PROPOR2024"] | |
self._preprocess_propor2024(base_path) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(base_path, "propor2024/train.csv"), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join( | |
base_path, "propor2024/validation.csv" | |
), | |
"split": "validation", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(base_path, "propor2024/test.csv"), | |
"split": "test", | |
}, | |
), | |
] | |
if "gradesThousand" == self.config.name: | |
urls = _URLS[self.config.name] | |
extracted_files = dl_manager.download_and_extract({self.config.name: urls}) | |
base_path = f"{extracted_files['gradesThousand']}/scrapedGradesThousand" | |
for split in ["train", "validation", "test"]: | |
split_filepath = os.path.join(base_path, f"{split}.csv") | |
grades_thousand = pd.read_csv(split_filepath) | |
grades_thousand[["supporting_text", "prompt"]] = grades_thousand[ | |
"supporting_text" | |
].apply( | |
lambda original_text: pd.Series( | |
self._extract_prompt_and_clean(original_text) | |
) | |
) | |
grades_thousand.to_csv(split_filepath, index=False) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(base_path, "train.csv"), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(base_path, "validation.csv"), | |
"split": "validation", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(base_path, "test.csv"), | |
"split": "test", | |
}, | |
), | |
] | |
if "sourceA" in self.config.name: | |
html_parser = self._process_html_files(extracted_files) | |
self._post_process_dataframe(html_parser.sourceA) | |
self._generate_splits(html_parser.sourceA) | |
folder_sourceA = Path(html_parser.sourceA).parent | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": folder_sourceA / "train.csv", | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": folder_sourceA / "validation.csv", | |
"split": "validation", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": folder_sourceA / "test.csv", | |
"split": "test", | |
}, | |
), | |
] | |
elif self.config.name == "sourceB": | |
html_parser = self._process_html_files(extracted_files) | |
self._post_process_dataframe(html_parser.sourceB) | |
return [ | |
datasets.SplitGenerator( | |
name="full", | |
gen_kwargs={ | |
"filepath": html_parser.sourceB, | |
"split": "full", | |
}, | |
), | |
] | |
elif "JBCS2025" == self.config.name: | |
extracted_files = dl_manager.download_and_extract( | |
{ | |
"sourceA": _URLS["sourceAWithGraders"], | |
"grades_thousand": _URLS["gradesThousand"], | |
} | |
) | |
config_name_source_a = "sourceAWithGraders" | |
html_parser = self._process_html_files( | |
paths_dict={config_name_source_a: extracted_files["sourceA"]}, | |
config_name=config_name_source_a, | |
) | |
self._post_process_dataframe(html_parser.sourceA) | |
self._generate_splits(html_parser.sourceA, config_name=config_name_source_a) | |
folder_sourceA = Path(html_parser.sourceA).parent | |
for split in ["train", "validation", "test"]: | |
sourceA = pd.read_csv(folder_sourceA / f"{split}.csv") | |
common_columns = [ | |
"id", | |
"id_prompt", | |
"essay_text", | |
"grades", | |
"essay_year", | |
"supporting_text", | |
"prompt", | |
"reference", | |
] | |
combined_split = sourceA[ | |
sourceA.reference.isin(["grader_a", "grader_b"]) | |
] | |
combined_split = combined_split.rename(columns={"essay": "essay_text"}) | |
combined_split["grades"] = combined_split["grades"].str.replace(",", "") | |
final_split = combined_split[common_columns].sample( | |
frac=1, random_state=RANDOM_STATE | |
).reset_index(drop=True) | |
# overwrites the sourceA data | |
final_split.to_csv(folder_sourceA / f"{split}.csv", index=False) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": folder_sourceA / "train.csv", | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": folder_sourceA / "validation.csv", | |
"split": "validation", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": folder_sourceA / "test.csv", | |
"split": "test", | |
}, | |
), | |
] | |
def _extract_prompt_and_clean(self, text: str): | |
""" | |
1) Find an uppercase block matching "PROPOSTA DE REDACAO/REDAÇÃO" | |
(with flexible spacing and accents) anywhere in 'text'. | |
2) Capture everything from there until the next heading that | |
starts a line (TEXTO..., TEXTOS..., INSTRUÇÕES...) or end-of-text. | |
3) Remove that captured block from the original, returning: | |
(supporting_text, prompt) | |
""" | |
# Regex explanation: | |
# (?m) => MULTILINE, so ^ can match start of lines | |
# 1) PROPOSTA\s+DE\s+REDA(?:C|Ç)(?:AO|ÃO) | |
# - "PROPOSTA", then one-or-more spaces/newlines, | |
# then "DE", then spaces, then "REDA(C|Ç)", | |
# and either "AO" or "ÃO" (uppercase). | |
# - This part may skip diacritic or accent variations in "REDAÇÃO" vs. "REDACAO". | |
# | |
# 2) (?:.*?\n?)*? => a non-greedy capture of subsequent lines | |
# (including possible newlines). We use [\s\S]*? as an alternative. | |
# | |
# 3) Lookahead (?=^(?:TEXTO|TEXTOS|INSTRUÇÕES|\Z)) | |
# means: stop right before a line that starts with "TEXTO", "TEXTOS", | |
# or "INSTRUÇÕES", OR the very end of the text (\Z). | |
# | |
# If found, that entire portion is group(1). | |
def force_newline_after_proposta(text: str) -> str: | |
""" | |
If we see "PROPOSTA DE REDAÇÃO" immediately followed by some | |
non-whitespace character (like "A"), insert two newlines. | |
E.g., "PROPOSTA DE REDAÇÃOA partir..." becomes | |
"PROPOSTA DE REDAÇÃO\n\nA partir..." | |
""" | |
# This pattern looks for: | |
# (PROPOSTA DE REDAÇÃO) | |
# (?=\S) meaning "immediately followed by a NON-whitespace character" | |
# then we replace that with "PROPOSTA DE REDAÇÃO\n\n" | |
pattern = re.compile(r"(?=\S)(PROPOSTA DE REDAÇÃO)(?=\S)") | |
return pattern.sub(r"\n\1\n\n", text) | |
text = force_newline_after_proposta(text) | |
pattern = re.compile( | |
r"(?m)" # MULTILINE | |
r"(" | |
r"PROPOSTA\s+DE\s+REDA(?:C|Ç)(?:AO|ÃO)" # e.g. PROPOSTA DE REDACAO / REDAÇÃO | |
r"(?:[\s\S]*?)" # lazily grab the subsequent text | |
r")" | |
r"(?=(?:TEXTO|TEXTOS|INSTRUÇÕES|TExTO|\Z))" | |
) | |
match = pattern.search(text) | |
if match: | |
prompt = match.group(1).strip() | |
# Remove that block from the original: | |
start, end = match.span(1) | |
main_text = text[:start] + text[end:] | |
else: | |
# No match => keep entire text in supporting_text, prompt empty | |
prompt = "" | |
main_text = text | |
return main_text.strip(), prompt.strip() | |
def _process_html_files(self, paths_dict, config_name=None): | |
html_parser = HTMLParser(paths_dict) | |
if config_name is None: | |
config_name = self.config.name | |
html_parser.parse(config_name) | |
return html_parser | |
def _parse_graders_data(self, dirname): | |
map_grades = {"0": 0, "1": 40, "2": 80, "3": 120, "4": 160, "5": 200} | |
def map_list(grades_list): | |
result = [map_grades.get(item, None) for item in grades_list] | |
sum_grades = sum(result) | |
result.append(sum_grades) | |
return result | |
grader_a = pd.read_csv(f"{dirname}/GraderA.csv") | |
grader_b = pd.read_csv(f"{dirname}/GraderB.csv") | |
for grader in [grader_a, grader_b]: | |
grader.grades = grader.grades.apply(lambda x: x.strip("[]").split(", ")) | |
grader.grades = grader.grades.apply(map_list) | |
grader_a["reference"] = "grader_a" | |
grader_b["reference"] = "grader_b" | |
return grader_a, grader_b | |
def _generate_splits(self, filepath: str, train_size=0.7, config_name=None): | |
np.random.seed(RANDOM_STATE) | |
df = pd.read_csv(filepath) | |
train_set = [] | |
val_set = [] | |
test_set = [] | |
df = df.sort_values(by=["essay_year", "id_prompt"]).reset_index(drop=True) | |
buckets = {} | |
for key, group in df.groupby("mapped_year"): | |
buckets[key] = sorted(group["id_prompt"].unique()) | |
df.drop("mapped_year", axis=1, inplace=True) | |
for year in sorted(buckets.keys()): | |
prompts = buckets[year] | |
np.random.shuffle(prompts) | |
num_prompts = len(prompts) | |
# All prompts go to the test if less than 3 | |
if num_prompts <= 3: | |
train_set.append(df[df["id_prompt"].isin([prompts[0]])]) | |
val_set.append(df[df["id_prompt"].isin([prompts[1]])]) | |
test_set.append(df[df["id_prompt"].isin([prompts[2]])]) | |
continue | |
# Determine the number of prompts for each set based on train_size and remaining prompts | |
num_train = math.floor(num_prompts * train_size) | |
num_val_test = num_prompts - num_train | |
num_val = num_val_test // 2 | |
num_test = num_val_test - num_val | |
# Assign prompts to each set | |
train_set.append(df[df["id_prompt"].isin(prompts[:num_train])]) | |
val_set.append( | |
df[df["id_prompt"].isin(prompts[num_train : (num_train + num_val)])] | |
) | |
test_set.append( | |
df[ | |
df["id_prompt"].isin( | |
prompts[ | |
(num_train + num_val) : (num_train + num_val + num_test) | |
] | |
) | |
] | |
) | |
# Convert lists of groups to DataFrames | |
train_df = pd.concat(train_set) | |
val_df = pd.concat(val_set) | |
test_df = pd.concat(test_set) | |
dirname = os.path.dirname(filepath) | |
if config_name is None: | |
config_name = self.config.name | |
if config_name == "sourceAWithGraders": | |
grader_a, grader_b = self._parse_graders_data(dirname) | |
grader_a_data = pd.merge( | |
train_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]], | |
grader_a.drop(columns=["essay"]), | |
on=["id", "id_prompt"], | |
how="inner", | |
) | |
grader_b_data = pd.merge( | |
train_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]], | |
grader_b.drop(columns=["essay"]), | |
on=["id", "id_prompt"], | |
how="inner", | |
) | |
train_df = pd.concat([train_df, grader_a_data, grader_b_data]) | |
train_df = train_df.sort_values(by=["id", "id_prompt"]).reset_index( | |
drop=True | |
) | |
grader_a_data = pd.merge( | |
val_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]], | |
grader_a.drop(columns=["essay"]), | |
on=["id", "id_prompt"], | |
how="inner", | |
) | |
grader_b_data = pd.merge( | |
val_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]], | |
grader_b.drop(columns=["essay"]), | |
on=["id", "id_prompt"], | |
how="inner", | |
) | |
val_df = pd.concat([val_df, grader_a_data, grader_b_data]) | |
val_df = val_df.sort_values(by=["id", "id_prompt"]).reset_index(drop=True) | |
grader_a_data = pd.merge( | |
test_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]], | |
grader_a.drop(columns=["essay"]), | |
on=["id", "id_prompt"], | |
how="inner", | |
) | |
grader_b_data = pd.merge( | |
test_df[["id", "id_prompt", "essay", "prompt", "supporting_text"]], | |
grader_b.drop(columns=["essay"]), | |
on=["id", "id_prompt"], | |
how="inner", | |
) | |
test_df = pd.concat([test_df, grader_a_data, grader_b_data]) | |
test_df = test_df.sort_values(by=["id", "id_prompt"]).reset_index(drop=True) | |
train_df = train_df.sample(frac=1, random_state=RANDOM_STATE).reset_index( | |
drop=True | |
) | |
val_df = val_df.sample(frac=1, random_state=RANDOM_STATE).reset_index( | |
drop=True | |
) | |
test_df = test_df.sample(frac=1, random_state=RANDOM_STATE).reset_index( | |
drop=True | |
) | |
# Data Validation Assertions | |
assert ( | |
len(set(train_df["id_prompt"]).intersection(set(val_df["id_prompt"]))) == 0 | |
), "Overlap between train and val id_prompt" | |
assert ( | |
len(set(train_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0 | |
), "Overlap between train and test id_prompt" | |
assert ( | |
len(set(val_df["id_prompt"]).intersection(set(test_df["id_prompt"]))) == 0 | |
), "Overlap between val and test id_prompt" | |
train_df.to_csv(f"{dirname}/train.csv", index=False) | |
val_df.to_csv(f"{dirname}/validation.csv", index=False) | |
test_df.to_csv(f"{dirname}/test.csv", index=False) | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, filepath, split): | |
if self.config.name == "PROPOR2024": | |
with open(filepath, encoding="utf-8") as csvfile: | |
next(csvfile) | |
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADERPROPOR) | |
for i, row in enumerate(csv_reader): | |
grades = row["grades"].strip("[]") | |
grades = grades.split() | |
yield ( | |
i, | |
{ | |
"id": row["id"], | |
"id_prompt": row["id_prompt"], | |
"essay_title": row["title"], | |
"essay_text": row["essay"], | |
"grades": grades, | |
"essay_year": row["essay_year"], | |
"reference": row["reference"], | |
}, | |
) | |
elif self.config.name == "gradesThousand": | |
with open(filepath, encoding="utf-8") as csvfile: | |
next(csvfile) | |
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADERTHOUSAND) | |
for i, row in enumerate(csv_reader): | |
grades = row["grades"].strip("[]") | |
grades = grades.split(", ") | |
yield ( | |
i, | |
{ | |
"id": row["id"], | |
"id_prompt": row["id_prompt"], | |
"supporting_text": row["supporting_text"], | |
"prompt": row["prompt"], | |
"essay_text": row["essay"], | |
"grades": grades, | |
"essay_year": row["essay_year"], | |
"author": row["author"], | |
"source": row["source"], | |
}, | |
) | |
elif self.config.name == "JBCS2025": | |
with open(filepath, encoding="utf-8") as csvfile: | |
next(csvfile) | |
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER_JBCS25) | |
for i, row in enumerate(csv_reader): | |
grades = row["grades"].strip("[]") | |
grades = grades.split() | |
yield ( | |
i, | |
{ | |
"id": row["id"], | |
"id_prompt": row["id_prompt"], | |
"essay_text": row["essay_text"], | |
"grades": grades, | |
"essay_year": row["essay_year"], | |
"supporting_text": row["supporting_text"], | |
"prompt": row["prompt"], | |
"reference": row["reference"], | |
}, | |
) | |
else: | |
with open(filepath, encoding="utf-8") as csvfile: | |
next(csvfile) | |
csv_reader = csv.DictReader(csvfile, fieldnames=CSV_HEADER) | |
for i, row in enumerate(csv_reader): | |
grades = row["grades"].strip("[]") | |
grades = grades.split(", ") | |
yield ( | |
i, | |
{ | |
"id": row["id"], | |
"id_prompt": row["id_prompt"], | |
"prompt": row["prompt"], | |
"supporting_text": row["supporting_text"], | |
"essay_title": row["title"], | |
"essay_text": row["essay"], | |
"grades": grades, | |
"essay_year": row["essay_year"], | |
"general_comment": row["general"], | |
"specific_comment": row["specific"], | |
"reference": row["reference"], | |
}, | |
) | |
class HTMLParser: | |
def __init__(self, paths_dict): | |
self.paths_dict = paths_dict | |
self.sourceA = None | |
self.sourceB = None | |
def apply_soup(self, filepath, num): | |
# recebe uma URL, salva o HTML dessa página e retorna o soup dela | |
file = open(os.path.join(filepath, num), "r", encoding="utf8") | |
conteudo = file.read() | |
soup = BeautifulSoup(conteudo, "html.parser") | |
return soup | |
def _get_title(self, soup): | |
if self.sourceA: | |
title = soup.find("div", class_="container-composition") | |
if title is None: | |
title = soup.find("h1", class_="pg-color10").get_text() | |
else: | |
title = title.h2.get_text() | |
title = title.replace("\xa0", "") | |
return title.replace(";", ",") | |
elif self.sourceB: | |
title = soup.find("h1", class_="titulo-conteudo").get_text() | |
return title.strip("- Banco de redações").strip() | |
def _get_grades(self, soup): | |
if self.sourceA: | |
grades = soup.find("section", class_="results-table") | |
final_grades = [] | |
if grades is not None: | |
grades = grades.find_all("span", class_="points") | |
assert len(grades) == 6, f"Missing grades: {len(grades)}" | |
for single_grade in grades: | |
grade = int(single_grade.get_text()) | |
final_grades.append(grade) | |
assert final_grades[-1] == sum(final_grades[:-1]), ( | |
"Grading sum is not making sense" | |
) | |
else: | |
grades = soup.find("div", class_="redacoes-corrigidas pg-bordercolor7") | |
grades_sum = float( | |
soup.find("th", class_="noBorder-left").get_text().replace(",", ".") | |
) | |
grades = grades.find_all("td")[:10] | |
for idx in range(1, 10, 2): | |
grade = float(grades[idx].get_text().replace(",", ".")) | |
final_grades.append(grade) | |
assert grades_sum == sum(final_grades), ( | |
"Grading sum is not making sense" | |
) | |
final_grades.append(grades_sum) | |
return final_grades | |
elif self.sourceB: | |
table = soup.find("table", {"id": "redacoes_corrigidas"}) | |
grades = table.find_all("td", class_="simple-td") | |
grades = grades[3:] | |
result = [] | |
for single_grade in grades: | |
result.append(int(single_grade.get_text())) | |
assert len(result) == 5, "We should have 5 Grades (one per concept) only" | |
result.append( | |
sum(result) | |
) # Add sum as a sixt element to keep the same pattern | |
return result | |
def _get_general_comment(self, soup): | |
if self.sourceA: | |
def get_general_comment_aux(soup): | |
result = soup.find("article", class_="list-item c") | |
if result is not None: | |
result = result.find("div", class_="description") | |
return result.get_text() | |
else: | |
result = soup.find("p", style="margin: 0px 0px 11px;") | |
if result is not None: | |
return result.get_text() | |
else: | |
result = soup.find("p", style="margin: 0px;") | |
if result is not None: | |
return result.get_text() | |
else: | |
result = soup.find( | |
"p", style="margin: 0px; text-align: justify;" | |
) | |
if result is not None: | |
return result.get_text() | |
else: | |
return "" | |
text = soup.find("div", class_="text") | |
if text is not None: | |
text = text.find("p") | |
if (text is None) or (len(text.get_text()) < 2): | |
return get_general_comment_aux(soup) | |
return text.get_text() | |
else: | |
return get_general_comment_aux(soup) | |
elif self.sourceB: | |
return "" | |
def _get_specific_comment(self, soup, general_comment): | |
if self.sourceA: | |
result = soup.find("div", class_="text") | |
cms = [] | |
if result is not None: | |
result = result.find_all("li") | |
if result != []: | |
for item in result: | |
text = item.get_text() | |
if text != "\xa0": | |
cms.append(text) | |
else: | |
result = soup.find("div", class_="text").find_all("p") | |
for item in result: | |
text = item.get_text() | |
if text != "\xa0": | |
cms.append(text) | |
else: | |
result = soup.find_all("article", class_="list-item c") | |
if len(result) < 2: | |
return ["First if"] | |
result = result[1].find_all("p") | |
for item in result: | |
text = item.get_text() | |
if text != "\xa0": | |
cms.append(text) | |
specific_comment = cms.copy() | |
if general_comment in specific_comment: | |
specific_comment.remove(general_comment) | |
if (len(specific_comment) > 1) and (len(specific_comment[0]) < 2): | |
specific_comment = specific_comment[1:] | |
return self._clean_list(specific_comment) | |
elif self.sourceB: | |
return "" | |
def _get_essay(self, soup): | |
if self.sourceA: | |
essay = soup.find("div", class_="text-composition") | |
result = [] | |
if essay is not None: | |
essay = essay.find_all("p") | |
for f in essay: | |
while f.find("span", style="color:#00b050") is not None: | |
f.find("span", style="color:#00b050").decompose() | |
while f.find("span", class_="certo") is not None: | |
f.find("span", class_="certo").decompose() | |
for paragraph in essay: | |
result.append(paragraph.get_text()) | |
else: | |
essay = soup.find("div", {"id": "texto"}) | |
essay.find("section", class_="list-items").decompose() | |
essay = essay.find_all("p") | |
for f in essay: | |
while f.find("span", class_="certo") is not None: | |
f.find("span", class_="certo").decompose() | |
for paragraph in essay: | |
result.append(paragraph.get_text()) | |
return "\n".join(self._clean_list(result)) | |
elif self.sourceB: | |
table = soup.find("article", class_="texto-conteudo entire") | |
table = soup.find("div", class_="area-redacao-corrigida") | |
if table is None: | |
result = None | |
else: | |
for span in soup.find_all("span"): | |
span.decompose() | |
result = table.find_all("p") | |
result = " ".join( | |
[ | |
paragraph.get_text().replace("\xa0", "").strip() | |
for paragraph in result | |
] | |
) | |
return result | |
def _get_essay_year(self, soup): | |
if self.sourceA: | |
pattern = r"redações corrigidas - \w+/\d+" | |
first_occurrence = re.search(pattern, soup.get_text().lower()) | |
matched_url = first_occurrence.group(0) if first_occurrence else None | |
year_pattern = r"\d{4}" | |
return re.search(year_pattern, matched_url).group(0) | |
elif self.sourceB: | |
pattern = r"Enviou seu texto em.*?(\d{4})" | |
match = re.search(pattern, soup.get_text()) | |
return match.group(1) if match else -1 | |
def _clean_title(self, title): | |
if self.sourceA: | |
smaller_index = title.find("[") | |
if smaller_index == -1: | |
return title | |
else: | |
bigger_index = title.find("]") | |
new_title = title[:smaller_index] + title[bigger_index + 1 :] | |
return self._clean_title(new_title.replace(" ", " ")) | |
elif self.sourceB: | |
return title | |
def _clean_list(self, list): | |
if list == []: | |
return [] | |
else: | |
new_list = [] | |
for phrase in list: | |
phrase = ( | |
phrase.replace("\xa0", "").replace(" ,", ",").replace(" .", ".") | |
) | |
while phrase.find(" ") != -1: | |
phrase = phrase.replace(" ", " ") | |
if len(phrase) > 1: | |
new_list.append(phrase) | |
return new_list | |
def _clean_string(self, sentence): | |
sentence = sentence.replace("\xa0", "").replace("\u200b", "") | |
sentence = ( | |
sentence.replace(".", ". ") | |
.replace("?", "? ") | |
.replace("!", "! ") | |
.replace(")", ") ") | |
.replace(":", ": ") | |
.replace("”", "” ") | |
) | |
sentence = sentence.replace(" ", " ").replace(". . . ", "...") | |
sentence = sentence.replace("(editado)", "").replace("(Editado)", "") | |
sentence = sentence.replace("(editado e adaptado)", "").replace( | |
"(Editado e adaptado)", "" | |
) | |
sentence = sentence.replace(". com. br", ".com.br") | |
sentence = sentence.replace("[Veja o texto completo aqui]", "") | |
return sentence | |
def _get_supporting_text(self, soup): | |
if self.sourceA: | |
textos = soup.find_all("ul", class_="article-wording-item") | |
resposta = [] | |
for t in textos[:-1]: | |
resposta.append( | |
t.find("h3", class_="item-titulo").get_text().replace("\xa0", "") | |
) | |
resposta.append( | |
self._clean_string( | |
t.find("div", class_="item-descricao").get_text() | |
) | |
) | |
return resposta | |
else: | |
return "" | |
def _get_prompt(self, soup): | |
if self.sourceA: | |
prompt = soup.find("div", class_="text").find_all("p") | |
if len(prompt[0].get_text()) < 2: | |
return [prompt[1].get_text().replace("\xa0", "")] | |
else: | |
return [prompt[0].get_text().replace("\xa0", "")] | |
else: | |
return "" | |
def _process_all_prompts(self, sub_folders, file_dir, reference, prompts_to_ignore): | |
""" | |
Process all prompt folders in parallel and return all rows to write. | |
Args: | |
sub_folders (list): List of prompt folder names (or Paths). | |
file_dir (str): Base directory where prompts are located. | |
reference: Reference info to include in each row. | |
prompts_to_ignore (collection): Prompts to be ignored. | |
Returns: | |
list: A list of all rows to write to the CSV. | |
""" | |
args_list = [ | |
(prompt_folder, file_dir, reference, prompts_to_ignore, self) | |
for prompt_folder in sub_folders | |
] | |
all_rows = [] | |
# Use a Pool to parallelize processing. | |
with Pool(processes=cpu_count()) as pool: | |
# Using imap allows us to update the progress bar. | |
for rows in tqdm( | |
pool.imap(HTMLParser._process_prompt_folder, args_list), | |
total=len(args_list), | |
desc="Processing prompts", | |
): | |
all_rows.extend(rows) | |
return all_rows | |
def parse(self, config_name: str): | |
for key, filepath in self.paths_dict.items(): | |
if key != config_name: | |
continue # TODO improve later, we will only support a single config at a time | |
if "sourceA" in config_name: | |
self.sourceA = f"{filepath}/sourceA/sourceA.csv" | |
elif config_name == "sourceB": | |
self.sourceB = f"{filepath}/sourceB/sourceB.csv" | |
file = self.sourceA if self.sourceA else self.sourceB | |
file_path = Path(file) | |
file_dir = file_path.parent | |
sorted_files = sorted(file_dir.iterdir(), key=lambda p: p.name) | |
sub_folders = [name for name in sorted_files if name.suffix != ".csv"] | |
reference = "crawled_from_web" | |
all_rows = self._process_all_prompts( | |
sub_folders, file_dir, reference, PROMPTS_TO_IGNORE | |
) | |
with open(file_path, "w", newline="", encoding="utf8") as final_file: | |
writer = csv.writer(final_file) | |
writer.writerow(CSV_HEADER) | |
for row in all_rows: | |
writer.writerow(row) | |
def _process_prompt_folder(args): | |
""" | |
Process one prompt folder and return a list of rows to write to CSV. | |
Args: | |
args (tuple): Contains: | |
- prompt_folder: The folder name (or Path object) for the prompt. | |
- file_dir: The base directory. | |
- reference: Reference info to include in each row. | |
- prompts_to_ignore: A collection of prompts to skip. | |
- instance: An instance of the class that contains the parsing methods. | |
Returns: | |
list: A list of rows (each row is a list) to write to CSV. | |
""" | |
prompt_folder, file_dir, reference, prompts_to_ignore, instance = args | |
rows = [] | |
# Skip folders that should be ignored. | |
if prompt_folder in prompts_to_ignore: | |
return rows | |
# Build the full path for the prompt folder. | |
prompt = os.path.join(file_dir, prompt_folder) | |
# List and sort the HTML files. | |
try: | |
sorted_prompts = sorted(os.listdir(prompt)) | |
except Exception as e: | |
print(f"Error listing directory {prompt}: {e}") | |
return rows | |
# Process the common "Prompt.html" once. | |
soup_prompt = instance.apply_soup(prompt, "Prompt.html") | |
essay_year = instance._get_essay_year(soup_prompt) | |
essay_supporting_text = "\n".join(instance._get_supporting_text(soup_prompt)) | |
essay_prompt = "\n".join(instance._get_prompt(soup_prompt)) | |
# Process each essay file except the prompt itself. | |
for essay_filename in sorted_prompts: | |
if essay_filename == "Prompt.html": | |
continue | |
soup_text = instance.apply_soup(prompt, essay_filename) | |
essay_title = instance._clean_title(instance._get_title(soup_text)) | |
essay_grades = instance._get_grades(soup_text) | |
essay_text = instance._get_essay(soup_text) | |
general_comment = instance._get_general_comment(soup_text).strip() | |
specific_comment = instance._get_specific_comment( | |
soup_text, general_comment | |
) | |
# Create a row with all the information. | |
row = [ | |
essay_filename, | |
prompt_folder | |
if not hasattr(prompt_folder, "name") | |
else prompt_folder.name, | |
essay_prompt, | |
essay_supporting_text, | |
essay_title, | |
essay_text, | |
essay_grades, | |
general_comment, | |
specific_comment, | |
essay_year, | |
reference, | |
] | |
rows.append(row) | |
return rows | |