Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Tags:
code
Libraries:
Datasets
pandas
License:
jpodivin commited on
Commit
192f51e
·
verified ·
1 Parent(s): 6c93317

Formatting processor.py with ruff (#4)

Browse files

- Formatting processor.py with ruff (dfa6c803fd9fb38dba5e58ed6c82f29ebae16a24)

Files changed (1) hide show
  1. processor.py +78 -43
processor.py CHANGED
@@ -54,6 +54,7 @@ FULL_CONVERSATION_MSG = """Given following log snippets, their explanation, and
54
 
55
  ANALYSIS_MSG = "Issue: {issue}\nResolution: {resolution}"
56
 
 
57
  def n_snippets(logs: dict):
58
  """Count number of snippets in a log."""
59
  cnt = 0
@@ -89,13 +90,20 @@ def fix_snippets(logs: dict):
89
  for log in logs:
90
  if logs[log]:
91
  for snippet in logs[log]["snippets"]:
92
- snippet_text = logs[log]["content"][snippet["start_index"]:snippet["end_index"]]
 
 
93
  if "text" not in snippet or not snippet["text"]:
94
  snippet["text"] = snippet_text
95
  return logs
96
 
97
 
98
- def cleanup(dataset: pd.DataFrame, min_how_to_fix_len=10, min_fail_reason_len=10, min_total_snippet_annot_len=10):
 
 
 
 
 
99
  """Cleaning the dataset
100
 
101
  For sake of simplicity we are going to assume following.
@@ -109,30 +117,36 @@ def cleanup(dataset: pd.DataFrame, min_how_to_fix_len=10, min_fail_reason_len=10
109
 
110
  # Fixing snippets with messed up text
111
  filled_snippets = dataset.logs.apply(fix_snippets)
112
- dataset['filled_snippets'] = filled_snippets
113
  dataset.logs = dataset.filled_snippets
114
 
115
  # Setting conditional columns
116
- dataset['how_to_fix_len'] = dataset.how_to_fix.apply(len)
117
- dataset['fail_reason_len'] = dataset.fail_reason.apply(len)
118
- dataset["tot_snippet_annot_len"] = dataset['logs'].apply(total_snippet_annotation_len)
 
 
119
 
120
  # Conditions
121
- almost_empty_fix = dataset['how_to_fix_len'] < min_how_to_fix_len
122
- almost_empty_reason = dataset['fail_reason_len'] < min_fail_reason_len
123
- almost_empty_snippet_annotations = dataset["tot_snippet_annot_len"] < min_total_snippet_annot_len
124
- none_snippets = dataset['logs'].apply(none_snippet)
 
 
125
 
126
  sparse_annotation_criteria = (
127
- almost_empty_snippet_annotations |
128
- almost_empty_reason |
129
- almost_empty_fix |
130
- none_snippets)
 
131
 
132
  sparse_count = dataset[sparse_annotation_criteria].shape[0]
133
  print(
134
  f"Total sparse annotations: {sparse_count} \
135
- Relative to original dataset: {sparse_count / dataset.shape[0]}")
 
136
 
137
  # Applying filters
138
  final_dataset = dataset[~sparse_annotation_criteria]
@@ -153,12 +167,14 @@ def load_data(data_path: str):
153
  for file in files:
154
  if file.endswith(".json"):
155
  try:
156
- with open(os.path.join(root, file), 'r', encoding='utf-8') as f:
157
  parsed_data = json.load(f)
158
  parsed_data["file_name"] = file
159
  data.append(parsed_data)
160
  except json.decoder.JSONDecodeError:
161
- print(f"Exception encountered while parsing {os.path.join(root, file)}, skipping.")
 
 
162
 
163
  return data
164
 
@@ -167,23 +183,21 @@ def make_snippet_qa(snippet: dict, user_message_template: str):
167
  """Create a QnA pair from a snippet"""
168
  return {
169
  "question": user_message_template.format(snippet["text"]),
170
- "answer": snippet["user_comment"]
171
  }
172
 
173
 
174
- def make_analysis_qa(snippets, issue, resolution, user_message_template,
175
- analysis_template):
 
176
  """Create QnA pair from entire annotation."""
177
  formatted_snippets = "\n=============\n".join(
178
- [
179
- f'[{e["text"]}]: [{e["user_comment"]}]'
180
- for e in snippets
181
- ]
182
  )
183
 
184
  return {
185
  "question": user_message_template.format(formatted_snippets),
186
- "answer": analysis_template.format(issue=issue, resolution=resolution)
187
  }
188
 
189
 
@@ -204,9 +218,7 @@ def to_qa_pairs(dataframe: pd.DataFrame):
204
  if logfiles[file] and "snippets" in logfiles[file]:
205
  for snippet in logfiles[file]["snippets"]:
206
  sample_snippet_messages.append(
207
- make_snippet_qa(
208
- snippet,
209
- SNIPPET_USER_MSG)
210
  )
211
  annotated_snippets.append(snippet)
212
  qa_pairs.append(
@@ -215,7 +227,9 @@ def to_qa_pairs(dataframe: pd.DataFrame):
215
  data.fail_reason,
216
  data.how_to_fix,
217
  FULL_CONVERSATION_MSG,
218
- ANALYSIS_MSG))
 
 
219
  # Adding individual snippet messages
220
  qa_pairs.extend(sample_snippet_messages)
221
  return qa_pairs
@@ -225,14 +239,18 @@ def split_dataset(dataset: pd.DataFrame, seed: int):
225
  """Splits dataset into training and evaluation subset"""
226
  split = dataset.shape[0] // 5
227
  dataset = dataset.sample(frac=1.0, random_state=seed)
228
- train_dataset, test_dataset = dataset[split:], dataset[:split]
229
 
230
  return train_dataset, test_dataset
231
 
232
 
233
- def main(hf_token, data_path="results/results", sanitize=True,
234
- seed=42, repo_id="fedora-copr/log_detective_qna",
235
- ):
 
 
 
 
236
  """Process entire directory and turn contents into parquet files."""
237
 
238
  # For reproducibility
@@ -252,7 +270,8 @@ def main(hf_token, data_path="results/results", sanitize=True,
252
 
253
  dataset = {
254
  "train": datasets.Dataset.from_list(train_dataset),
255
- "test": datasets.Dataset.from_list(test_dataset)}
 
256
 
257
  dataset = datasets.DatasetDict(dataset)
258
 
@@ -265,18 +284,34 @@ def main(hf_token, data_path="results/results", sanitize=True,
265
  if __name__ == "__main__":
266
  parser = argparse.ArgumentParser("Dataset Processor")
267
  parser.add_argument(
268
- "data_path", type=str, default="results/results", help="Path to annotations.")
 
269
  parser.add_argument(
270
- "--sanitize", action='store_true', help="Run basic data cleanup procedure, dataset build may fail without it.")
 
 
 
271
  parser.add_argument(
272
- "--seed", type=int, default=42,
273
- help="Seed for random generator to be used when generating split.")
 
 
 
274
  parser.add_argument(
275
- "--repo_id", type=str, default="fedora-copr/log_detective_qna",
276
- help="ID of Hugging Face repo")
277
- parser.add_argument("--token", type=str, required=True, help="Token for Hugging face")
 
 
 
 
 
278
  args = parser.parse_args()
279
 
280
  main(
281
- data_path=args.data_path, sanitize=args.sanitize,
282
- seed=args.seed, repo_id=args.repo_id, hf_token=args.token)
 
 
 
 
 
54
 
55
  ANALYSIS_MSG = "Issue: {issue}\nResolution: {resolution}"
56
 
57
+
58
  def n_snippets(logs: dict):
59
  """Count number of snippets in a log."""
60
  cnt = 0
 
90
  for log in logs:
91
  if logs[log]:
92
  for snippet in logs[log]["snippets"]:
93
+ snippet_text = logs[log]["content"][
94
+ snippet["start_index"] : snippet["end_index"]
95
+ ]
96
  if "text" not in snippet or not snippet["text"]:
97
  snippet["text"] = snippet_text
98
  return logs
99
 
100
 
101
+ def cleanup(
102
+ dataset: pd.DataFrame,
103
+ min_how_to_fix_len=10,
104
+ min_fail_reason_len=10,
105
+ min_total_snippet_annot_len=10,
106
+ ):
107
  """Cleaning the dataset
108
 
109
  For sake of simplicity we are going to assume following.
 
117
 
118
  # Fixing snippets with messed up text
119
  filled_snippets = dataset.logs.apply(fix_snippets)
120
+ dataset["filled_snippets"] = filled_snippets
121
  dataset.logs = dataset.filled_snippets
122
 
123
  # Setting conditional columns
124
+ dataset["how_to_fix_len"] = dataset.how_to_fix.apply(len)
125
+ dataset["fail_reason_len"] = dataset.fail_reason.apply(len)
126
+ dataset["tot_snippet_annot_len"] = dataset["logs"].apply(
127
+ total_snippet_annotation_len
128
+ )
129
 
130
  # Conditions
131
+ almost_empty_fix = dataset["how_to_fix_len"] < min_how_to_fix_len
132
+ almost_empty_reason = dataset["fail_reason_len"] < min_fail_reason_len
133
+ almost_empty_snippet_annotations = (
134
+ dataset["tot_snippet_annot_len"] < min_total_snippet_annot_len
135
+ )
136
+ none_snippets = dataset["logs"].apply(none_snippet)
137
 
138
  sparse_annotation_criteria = (
139
+ almost_empty_snippet_annotations
140
+ | almost_empty_reason
141
+ | almost_empty_fix
142
+ | none_snippets
143
+ )
144
 
145
  sparse_count = dataset[sparse_annotation_criteria].shape[0]
146
  print(
147
  f"Total sparse annotations: {sparse_count} \
148
+ Relative to original dataset: {sparse_count / dataset.shape[0]}"
149
+ )
150
 
151
  # Applying filters
152
  final_dataset = dataset[~sparse_annotation_criteria]
 
167
  for file in files:
168
  if file.endswith(".json"):
169
  try:
170
+ with open(os.path.join(root, file), "r", encoding="utf-8") as f:
171
  parsed_data = json.load(f)
172
  parsed_data["file_name"] = file
173
  data.append(parsed_data)
174
  except json.decoder.JSONDecodeError:
175
+ print(
176
+ f"Exception encountered while parsing {os.path.join(root, file)}, skipping."
177
+ )
178
 
179
  return data
180
 
 
183
  """Create a QnA pair from a snippet"""
184
  return {
185
  "question": user_message_template.format(snippet["text"]),
186
+ "answer": snippet["user_comment"],
187
  }
188
 
189
 
190
+ def make_analysis_qa(
191
+ snippets, issue, resolution, user_message_template, analysis_template
192
+ ):
193
  """Create QnA pair from entire annotation."""
194
  formatted_snippets = "\n=============\n".join(
195
+ [f"[{e['text']}]: [{e['user_comment']}]" for e in snippets]
 
 
 
196
  )
197
 
198
  return {
199
  "question": user_message_template.format(formatted_snippets),
200
+ "answer": analysis_template.format(issue=issue, resolution=resolution),
201
  }
202
 
203
 
 
218
  if logfiles[file] and "snippets" in logfiles[file]:
219
  for snippet in logfiles[file]["snippets"]:
220
  sample_snippet_messages.append(
221
+ make_snippet_qa(snippet, SNIPPET_USER_MSG)
 
 
222
  )
223
  annotated_snippets.append(snippet)
224
  qa_pairs.append(
 
227
  data.fail_reason,
228
  data.how_to_fix,
229
  FULL_CONVERSATION_MSG,
230
+ ANALYSIS_MSG,
231
+ )
232
+ )
233
  # Adding individual snippet messages
234
  qa_pairs.extend(sample_snippet_messages)
235
  return qa_pairs
 
239
  """Splits dataset into training and evaluation subset"""
240
  split = dataset.shape[0] // 5
241
  dataset = dataset.sample(frac=1.0, random_state=seed)
242
+ train_dataset, test_dataset = dataset[split:], dataset[:split]
243
 
244
  return train_dataset, test_dataset
245
 
246
 
247
+ def main(
248
+ hf_token,
249
+ data_path="results/results",
250
+ sanitize=True,
251
+ seed=42,
252
+ repo_id="fedora-copr/log_detective_qna",
253
+ ):
254
  """Process entire directory and turn contents into parquet files."""
255
 
256
  # For reproducibility
 
270
 
271
  dataset = {
272
  "train": datasets.Dataset.from_list(train_dataset),
273
+ "test": datasets.Dataset.from_list(test_dataset),
274
+ }
275
 
276
  dataset = datasets.DatasetDict(dataset)
277
 
 
284
  if __name__ == "__main__":
285
  parser = argparse.ArgumentParser("Dataset Processor")
286
  parser.add_argument(
287
+ "data_path", type=str, default="results/results", help="Path to annotations."
288
+ )
289
  parser.add_argument(
290
+ "--sanitize",
291
+ action="store_true",
292
+ help="Run basic data cleanup procedure, dataset build may fail without it.",
293
+ )
294
  parser.add_argument(
295
+ "--seed",
296
+ type=int,
297
+ default=42,
298
+ help="Seed for random generator to be used when generating split.",
299
+ )
300
  parser.add_argument(
301
+ "--repo_id",
302
+ type=str,
303
+ default="fedora-copr/log_detective_qna",
304
+ help="ID of Hugging Face repo",
305
+ )
306
+ parser.add_argument(
307
+ "--token", type=str, required=True, help="Token for Hugging face"
308
+ )
309
  args = parser.parse_args()
310
 
311
  main(
312
+ data_path=args.data_path,
313
+ sanitize=args.sanitize,
314
+ seed=args.seed,
315
+ repo_id=args.repo_id,
316
+ hf_token=args.token,
317
+ )