# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import abc
import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from packaging import version
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel
from diffusers.configuration_utils import FrozenDict, deprecate
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import (
    FromSingleFileMixin,
    IPAdapterMixin,
    LoraLoaderMixin,
    TextualInversionLoaderMixin,
)
from diffusers.models.attention import Attention
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import (
    StableDiffusionSafetyChecker,
)
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    USE_PEFT_BACKEND,
    logging,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor


logger = logging.get_logger(__name__)


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


class Prompt2PromptPipeline(
    DiffusionPipeline,
    TextualInversionLoaderMixin,
    LoraLoaderMixin,
    IPAdapterMixin,
    FromSingleFileMixin,
):
    r"""
    Pipeline for text-to-image generation using Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
    """

    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
    _exclude_from_cpu_offload = ["safety_checker"]
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
    _optional_components = ["safety_checker", "feature_extractor"]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        image_encoder: CLIPVisionModelWithProjection = None,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        **kwargs,
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            **kwargs,
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            lora_scale (`float`, *optional*):
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device),
                    attention_mask=attention_mask,
                    output_hidden_states=True,
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        shape = (
            batch_size,
            num_channels_latents,
            height // self.vae_scale_factor,
            width // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

                The keyword arguments to configure the edit are:
                - edit_type (`str`). The edit type to apply. Can be either of `replace`, `refine`, `reweight`.
                - n_cross_replace (`int`): Number of diffusion steps in which cross attention should be replaced
                - n_self_replace (`int`): Number of diffusion steps in which self attention should be replaced
                - local_blend_words(`List[str]`, *optional*, default to `None`): Determines which area should be
                  changed. If None, then the whole image can be changed.
                - equalizer_words(`List[str]`, *optional*, default to `None`): Required for edit type `reweight`.
                  Determines which words should be enhanced.
                - equalizer_strengths (`List[float]`, *optional*, default to `None`) Required for edit type `reweight`.
                  Determines which how much the words in `equalizer_words` should be enhanced.

            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """

        self.controller = create_controller(
            prompt,
            cross_attention_kwargs,
            num_inference_steps,
            tokenizer=self.tokenizer,
            device=self.device,
        )
        self.register_attention_control(self.controller)  # add attention controller

        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps)

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # step callback
                latents = self.controller.step_callback(latents)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

        # 8. Post-processing
        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        # 9. Run safety checker
        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def register_attention_control(self, controller):
        attn_procs = {}
        cross_att_count = 0
        for name in self.unet.attn_processors.keys():
            (None if name.endswith("attn1.processor") else self.unet.config.cross_attention_dim)
            if name.startswith("mid_block"):
                self.unet.config.block_out_channels[-1]
                place_in_unet = "mid"
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                list(reversed(self.unet.config.block_out_channels))[block_id]
                place_in_unet = "up"
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                self.unet.config.block_out_channels[block_id]
                place_in_unet = "down"
            else:
                continue
            cross_att_count += 1
            attn_procs[name] = P2PCrossAttnProcessor(controller=controller, place_in_unet=place_in_unet)

        self.unet.set_attn_processor(attn_procs)
        controller.num_att_layers = cross_att_count


class P2PCrossAttnProcessor:
    def __init__(self, controller, place_in_unet):
        super().__init__()
        self.controller = controller
        self.place_in_unet = place_in_unet

    def __call__(
        self,
        attn: Attention,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
    ):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        query = attn.to_q(hidden_states)

        is_cross = encoder_hidden_states is not None
        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)

        # one line change
        self.controller(attention_probs, is_cross, self.place_in_unet)

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states


def create_controller(
    prompts: List[str],
    cross_attention_kwargs: Dict,
    num_inference_steps: int,
    tokenizer,
    device,
) -> AttentionControl:
    edit_type = cross_attention_kwargs.get("edit_type", None)
    local_blend_words = cross_attention_kwargs.get("local_blend_words", None)
    equalizer_words = cross_attention_kwargs.get("equalizer_words", None)
    equalizer_strengths = cross_attention_kwargs.get("equalizer_strengths", None)
    n_cross_replace = cross_attention_kwargs.get("n_cross_replace", 0.4)
    n_self_replace = cross_attention_kwargs.get("n_self_replace", 0.4)

    # only replace
    if edit_type == "replace" and local_blend_words is None:
        return AttentionReplace(
            prompts,
            num_inference_steps,
            n_cross_replace,
            n_self_replace,
            tokenizer=tokenizer,
            device=device,
        )

    # replace + localblend
    if edit_type == "replace" and local_blend_words is not None:
        lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device)
        return AttentionReplace(
            prompts,
            num_inference_steps,
            n_cross_replace,
            n_self_replace,
            lb,
            tokenizer=tokenizer,
            device=device,
        )

    # only refine
    if edit_type == "refine" and local_blend_words is None:
        return AttentionRefine(
            prompts,
            num_inference_steps,
            n_cross_replace,
            n_self_replace,
            tokenizer=tokenizer,
            device=device,
        )

    # refine + localblend
    if edit_type == "refine" and local_blend_words is not None:
        lb = LocalBlend(prompts, local_blend_words, tokenizer=tokenizer, device=device)
        return AttentionRefine(
            prompts,
            num_inference_steps,
            n_cross_replace,
            n_self_replace,
            lb,
            tokenizer=tokenizer,
            device=device,
        )

    # reweight
    if edit_type == "reweight":
        assert (
            equalizer_words is not None and equalizer_strengths is not None
        ), "To use reweight edit, please specify equalizer_words and equalizer_strengths."
        assert len(equalizer_words) == len(
            equalizer_strengths
        ), "equalizer_words and equalizer_strengths must be of same length."
        equalizer = get_equalizer(prompts[1], equalizer_words, equalizer_strengths, tokenizer=tokenizer)
        return AttentionReweight(
            prompts,
            num_inference_steps,
            n_cross_replace,
            n_self_replace,
            tokenizer=tokenizer,
            device=device,
            equalizer=equalizer,
        )

    raise ValueError(f"Edit type {edit_type} not recognized. Use one of: replace, refine, reweight.")


class AttentionControl(abc.ABC):
    def step_callback(self, x_t):
        return x_t

    def between_steps(self):
        return

    @property
    def num_uncond_att_layers(self):
        return 0

    @abc.abstractmethod
    def forward(self, attn, is_cross: bool, place_in_unet: str):
        raise NotImplementedError

    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        if self.cur_att_layer >= self.num_uncond_att_layers:
            h = attn.shape[0]
            attn[h // 2 :] = self.forward(attn[h // 2 :], is_cross, place_in_unet)
        self.cur_att_layer += 1
        if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
            self.cur_att_layer = 0
            self.cur_step += 1
            self.between_steps()
        return attn

    def reset(self):
        self.cur_step = 0
        self.cur_att_layer = 0

    def __init__(self):
        self.cur_step = 0
        self.num_att_layers = -1
        self.cur_att_layer = 0


class EmptyControl(AttentionControl):
    def forward(self, attn, is_cross: bool, place_in_unet: str):
        return attn


class AttentionStore(AttentionControl):
    @staticmethod
    def get_empty_store():
        return {
            "down_cross": [],
            "mid_cross": [],
            "up_cross": [],
            "down_self": [],
            "mid_self": [],
            "up_self": [],
        }

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
        if attn.shape[1] <= 32**2:  # avoid memory overhead
            self.step_store[key].append(attn)
        return attn

    def between_steps(self):
        if len(self.attention_store) == 0:
            self.attention_store = self.step_store
        else:
            for key in self.attention_store:
                for i in range(len(self.attention_store[key])):
                    self.attention_store[key][i] += self.step_store[key][i]
        self.step_store = self.get_empty_store()

    def get_average_attention(self):
        average_attention = {
            key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
        }
        return average_attention

    def reset(self):
        super(AttentionStore, self).reset()
        self.step_store = self.get_empty_store()
        self.attention_store = {}

    def __init__(self):
        super(AttentionStore, self).__init__()
        self.step_store = self.get_empty_store()
        self.attention_store = {}


class LocalBlend:
    def __call__(self, x_t, attention_store):
        k = 1
        maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
        maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, self.max_num_words) for item in maps]
        maps = torch.cat(maps, dim=1)
        maps = (maps * self.alpha_layers).sum(-1).mean(1)
        mask = F.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
        mask = F.interpolate(mask, size=(x_t.shape[2:]))
        mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
        mask = mask.gt(self.threshold)
        mask = (mask[:1] + mask[1:]).float()
        x_t = x_t[:1] + mask * (x_t - x_t[:1])
        return x_t

    def __init__(
        self,
        prompts: List[str],
        words: [List[List[str]]],
        tokenizer,
        device,
        threshold=0.3,
        max_num_words=77,
    ):
        self.max_num_words = 77

        alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, self.max_num_words)
        for i, (prompt, words_) in enumerate(zip(prompts, words)):
            if isinstance(words_, str):
                words_ = [words_]
            for word in words_:
                ind = get_word_inds(prompt, word, tokenizer)
                alpha_layers[i, :, :, :, :, ind] = 1
        self.alpha_layers = alpha_layers.to(device)
        self.threshold = threshold


class AttentionControlEdit(AttentionStore, abc.ABC):
    def step_callback(self, x_t):
        if self.local_blend is not None:
            x_t = self.local_blend(x_t, self.attention_store)
        return x_t

    def replace_self_attention(self, attn_base, att_replace):
        if att_replace.shape[2] <= 16**2:
            return attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
        else:
            return att_replace

    @abc.abstractmethod
    def replace_cross_attention(self, attn_base, att_replace):
        raise NotImplementedError

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
        # FIXME not replace correctly
        if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
            h = attn.shape[0] // (self.batch_size)
            attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
            attn_base, attn_repalce = attn[0], attn[1:]
            if is_cross:
                alpha_words = self.cross_replace_alpha[self.cur_step]
                attn_repalce_new = (
                    self.replace_cross_attention(attn_base, attn_repalce) * alpha_words
                    + (1 - alpha_words) * attn_repalce
                )
                attn[1:] = attn_repalce_new
            else:
                attn[1:] = self.replace_self_attention(attn_base, attn_repalce)
            attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
        return attn

    def __init__(
        self,
        prompts,
        num_steps: int,
        cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
        self_replace_steps: Union[float, Tuple[float, float]],
        local_blend: Optional[LocalBlend],
        tokenizer,
        device,
    ):
        super(AttentionControlEdit, self).__init__()
        # add tokenizer and device here

        self.tokenizer = tokenizer
        self.device = device

        self.batch_size = len(prompts)
        self.cross_replace_alpha = get_time_words_attention_alpha(
            prompts, num_steps, cross_replace_steps, self.tokenizer
        ).to(self.device)
        if isinstance(self_replace_steps, float):
            self_replace_steps = 0, self_replace_steps
        self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
        self.local_blend = local_blend  # 在外面定义后传进来


class AttentionReplace(AttentionControlEdit):
    def replace_cross_attention(self, attn_base, att_replace):
        return torch.einsum("hpw,bwn->bhpn", attn_base, self.mapper)

    def __init__(
        self,
        prompts,
        num_steps: int,
        cross_replace_steps: float,
        self_replace_steps: float,
        local_blend: Optional[LocalBlend] = None,
        tokenizer=None,
        device=None,
    ):
        super(AttentionReplace, self).__init__(
            prompts,
            num_steps,
            cross_replace_steps,
            self_replace_steps,
            local_blend,
            tokenizer,
            device,
        )
        self.mapper = get_replacement_mapper(prompts, self.tokenizer).to(self.device)


class AttentionRefine(AttentionControlEdit):
    def replace_cross_attention(self, attn_base, att_replace):
        attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
        attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
        return attn_replace

    def __init__(
        self,
        prompts,
        num_steps: int,
        cross_replace_steps: float,
        self_replace_steps: float,
        local_blend: Optional[LocalBlend] = None,
        tokenizer=None,
        device=None,
    ):
        super(AttentionRefine, self).__init__(
            prompts,
            num_steps,
            cross_replace_steps,
            self_replace_steps,
            local_blend,
            tokenizer,
            device,
        )
        self.mapper, alphas = get_refinement_mapper(prompts, self.tokenizer)
        self.mapper, alphas = self.mapper.to(self.device), alphas.to(self.device)
        self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])


class AttentionReweight(AttentionControlEdit):
    def replace_cross_attention(self, attn_base, att_replace):
        if self.prev_controller is not None:
            attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
        attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
        return attn_replace

    def __init__(
        self,
        prompts,
        num_steps: int,
        cross_replace_steps: float,
        self_replace_steps: float,
        equalizer,
        local_blend: Optional[LocalBlend] = None,
        controller: Optional[AttentionControlEdit] = None,
        tokenizer=None,
        device=None,
    ):
        super(AttentionReweight, self).__init__(
            prompts,
            num_steps,
            cross_replace_steps,
            self_replace_steps,
            local_blend,
            tokenizer,
            device,
        )
        self.equalizer = equalizer.to(self.device)
        self.prev_controller = controller


### util functions for all Edits
def update_alpha_time_word(
    alpha,
    bounds: Union[float, Tuple[float, float]],
    prompt_ind: int,
    word_inds: Optional[torch.Tensor] = None,
):
    if isinstance(bounds, float):
        bounds = 0, bounds
    start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
    if word_inds is None:
        word_inds = torch.arange(alpha.shape[2])
    alpha[:start, prompt_ind, word_inds] = 0
    alpha[start:end, prompt_ind, word_inds] = 1
    alpha[end:, prompt_ind, word_inds] = 0
    return alpha


def get_time_words_attention_alpha(
    prompts,
    num_steps,
    cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
    tokenizer,
    max_num_words=77,
):
    if not isinstance(cross_replace_steps, dict):
        cross_replace_steps = {"default_": cross_replace_steps}
    if "default_" not in cross_replace_steps:
        cross_replace_steps["default_"] = (0.0, 1.0)
    alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
    for i in range(len(prompts) - 1):
        alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], i)
    for key, item in cross_replace_steps.items():
        if key != "default_":
            inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
            for i, ind in enumerate(inds):
                if len(ind) > 0:
                    alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
    alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
    return alpha_time_words


### util functions for LocalBlend and ReplacementEdit
def get_word_inds(text: str, word_place: int, tokenizer):
    split_text = text.split(" ")
    if isinstance(word_place, str):
        word_place = [i for i, word in enumerate(split_text) if word_place == word]
    elif isinstance(word_place, int):
        word_place = [word_place]
    out = []
    if len(word_place) > 0:
        words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
        cur_len, ptr = 0, 0

        for i in range(len(words_encode)):
            cur_len += len(words_encode[i])
            if ptr in word_place:
                out.append(i + 1)
            if cur_len >= len(split_text[ptr]):
                ptr += 1
                cur_len = 0
    return np.array(out)


### util functions for ReplacementEdit
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
    words_x = x.split(" ")
    words_y = y.split(" ")
    if len(words_x) != len(words_y):
        raise ValueError(
            f"attention replacement edit can only be applied on prompts with the same length"
            f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words."
        )
    inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
    inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
    inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
    mapper = np.zeros((max_len, max_len))
    i = j = 0
    cur_inds = 0
    while i < max_len and j < max_len:
        if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
            inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
            if len(inds_source_) == len(inds_target_):
                mapper[inds_source_, inds_target_] = 1
            else:
                ratio = 1 / len(inds_target_)
                for i_t in inds_target_:
                    mapper[inds_source_, i_t] = ratio
            cur_inds += 1
            i += len(inds_source_)
            j += len(inds_target_)
        elif cur_inds < len(inds_source):
            mapper[i, j] = 1
            i += 1
            j += 1
        else:
            mapper[j, j] = 1
            i += 1
            j += 1

    return torch.from_numpy(mapper).float()


def get_replacement_mapper(prompts, tokenizer, max_len=77):
    x_seq = prompts[0]
    mappers = []
    for i in range(1, len(prompts)):
        mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
        mappers.append(mapper)
    return torch.stack(mappers)


### util functions for ReweightEdit
def get_equalizer(
    text: str,
    word_select: Union[int, Tuple[int, ...]],
    values: Union[List[float], Tuple[float, ...]],
    tokenizer,
):
    if isinstance(word_select, (int, str)):
        word_select = (word_select,)
    equalizer = torch.ones(len(values), 77)
    values = torch.tensor(values, dtype=torch.float32)
    for word in word_select:
        inds = get_word_inds(text, word, tokenizer)
        equalizer[:, inds] = values
    return equalizer


### util functions for RefinementEdit
class ScoreParams:
    def __init__(self, gap, match, mismatch):
        self.gap = gap
        self.match = match
        self.mismatch = mismatch

    def mis_match_char(self, x, y):
        if x != y:
            return self.mismatch
        else:
            return self.match


def get_matrix(size_x, size_y, gap):
    matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
    matrix[0, 1:] = (np.arange(size_y) + 1) * gap
    matrix[1:, 0] = (np.arange(size_x) + 1) * gap
    return matrix


def get_traceback_matrix(size_x, size_y):
    matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
    matrix[0, 1:] = 1
    matrix[1:, 0] = 2
    matrix[0, 0] = 4
    return matrix


def global_align(x, y, score):
    matrix = get_matrix(len(x), len(y), score.gap)
    trace_back = get_traceback_matrix(len(x), len(y))
    for i in range(1, len(x) + 1):
        for j in range(1, len(y) + 1):
            left = matrix[i, j - 1] + score.gap
            up = matrix[i - 1, j] + score.gap
            diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
            matrix[i, j] = max(left, up, diag)
            if matrix[i, j] == left:
                trace_back[i, j] = 1
            elif matrix[i, j] == up:
                trace_back[i, j] = 2
            else:
                trace_back[i, j] = 3
    return matrix, trace_back


def get_aligned_sequences(x, y, trace_back):
    x_seq = []
    y_seq = []
    i = len(x)
    j = len(y)
    mapper_y_to_x = []
    while i > 0 or j > 0:
        if trace_back[i, j] == 3:
            x_seq.append(x[i - 1])
            y_seq.append(y[j - 1])
            i = i - 1
            j = j - 1
            mapper_y_to_x.append((j, i))
        elif trace_back[i][j] == 1:
            x_seq.append("-")
            y_seq.append(y[j - 1])
            j = j - 1
            mapper_y_to_x.append((j, -1))
        elif trace_back[i][j] == 2:
            x_seq.append(x[i - 1])
            y_seq.append("-")
            i = i - 1
        elif trace_back[i][j] == 4:
            break
    mapper_y_to_x.reverse()
    return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)


def get_mapper(x: str, y: str, tokenizer, max_len=77):
    x_seq = tokenizer.encode(x)
    y_seq = tokenizer.encode(y)
    score = ScoreParams(0, 1, -1)
    matrix, trace_back = global_align(x_seq, y_seq, score)
    mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
    alphas = torch.ones(max_len)
    alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
    mapper = torch.zeros(max_len, dtype=torch.int64)
    mapper[: mapper_base.shape[0]] = mapper_base[:, 1]
    mapper[mapper_base.shape[0] :] = len(y_seq) + torch.arange(max_len - len(y_seq))
    return mapper, alphas


def get_refinement_mapper(prompts, tokenizer, max_len=77):
    x_seq = prompts[0]
    mappers, alphas = [], []
    for i in range(1, len(prompts)):
        mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
        mappers.append(mapper)
        alphas.append(alpha)
    return torch.stack(mappers), torch.stack(alphas)