Upload folder using huggingface_hub
Browse files- main/README.md +48 -1
- main/pipeline_stable_diffusion_3_instruct_pix2pix.py +1266 -0
main/README.md
CHANGED
@@ -86,6 +86,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar
|
|
86 |
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
|
87 |
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
|
88 |
| FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://arxiv.org/abs/2411.18824) - FaithDiff is a faithful image super-resolution method that leverages latent diffusion models by actively adapting the diffusion prior and jointly fine-tuning its components (encoder and diffusion model) with an alignment module to ensure high fidelity and structural consistency. | [FaithDiff Stable Diffusion XL Pipeline](#faithdiff-stable-diffusion-xl-pipeline) | [](https://huggingface.co/jychen9811/FaithDiff) | [Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab, (Adapted by Eliseu Silva)](https://github.com/JyChen9811/FaithDiff) |
|
|
|
89 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
90 |
|
91 |
```py
|
@@ -5432,4 +5433,50 @@ cropped_image = gen_image.crop((0, 0, width_init, height_init))
|
|
5432 |
cropped_image.save("data/result.png")
|
5433 |
````
|
5434 |
### Result
|
5435 |
-
[<img src="https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/faithdiff_restored.PNG" width="512px" height="512px"/>](https://imgsli.com/MzY1NzE2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
|
87 |
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
|
88 |
| FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://arxiv.org/abs/2411.18824) - FaithDiff is a faithful image super-resolution method that leverages latent diffusion models by actively adapting the diffusion prior and jointly fine-tuning its components (encoder and diffusion model) with an alignment module to ensure high fidelity and structural consistency. | [FaithDiff Stable Diffusion XL Pipeline](#faithdiff-stable-diffusion-xl-pipeline) | [](https://huggingface.co/jychen9811/FaithDiff) | [Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab, (Adapted by Eliseu Silva)](https://github.com/JyChen9811/FaithDiff) |
|
89 |
+
| Stable Diffusion 3 InstructPix2Pix Pipeline | Implementation of Stable Diffusion 3 InstructPix2Pix Pipeline | [Stable Diffusion 3 InstructPix2Pix Pipeline](#stable-diffusion-3-instructpix2pix-pipeline) | [](https://huggingface.co/BleachNick/SD3_UltraEdit_freeform) [](https://huggingface.co/CaptainZZZ/sd3-instructpix2pix) | [Jiayu Zhang](https://github.com/xduzhangjiayu) and [Haozhe Zhao](https://github.com/HaozheZhao)|
|
90 |
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
91 |
|
92 |
```py
|
|
|
5433 |
cropped_image.save("data/result.png")
|
5434 |
````
|
5435 |
### Result
|
5436 |
+
[<img src="https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/faithdiff_restored.PNG" width="512px" height="512px"/>](https://imgsli.com/MzY1NzE2)
|
5437 |
+
|
5438 |
+
|
5439 |
+
# Stable Diffusion 3 InstructPix2Pix Pipeline
|
5440 |
+
This the implementation of the Stable Diffusion 3 InstructPix2Pix Pipeline, based on the HuggingFace Diffusers.
|
5441 |
+
|
5442 |
+
## Example Usage
|
5443 |
+
This pipeline aims to edit image based on user's instruction by using SD3
|
5444 |
+
````py
|
5445 |
+
import torch
|
5446 |
+
from diffusers import SD3Transformer2DModel
|
5447 |
+
from diffusers import DiffusionPipeline
|
5448 |
+
from diffusers.utils import load_image
|
5449 |
+
|
5450 |
+
|
5451 |
+
resolution = 512
|
5452 |
+
image = load_image("https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png").resize(
|
5453 |
+
(resolution, resolution)
|
5454 |
+
)
|
5455 |
+
edit_instruction = "Turn sky into a sunny one"
|
5456 |
+
|
5457 |
+
|
5458 |
+
pipe = DiffusionPipeline.from_pretrained(
|
5459 |
+
"stabilityai/stable-diffusion-3-medium-diffusers", custom_pipeline="pipeline_stable_diffusion_3_instruct_pix2pix", torch_dtype=torch.float16).to('cuda')
|
5460 |
+
|
5461 |
+
pipe.transformer = SD3Transformer2DModel.from_pretrained("CaptainZZZ/sd3-instructpix2pix",torch_dtype=torch.float16).to('cuda')
|
5462 |
+
|
5463 |
+
edited_image = pipe(
|
5464 |
+
prompt=edit_instruction,
|
5465 |
+
image=image,
|
5466 |
+
height=resolution,
|
5467 |
+
width=resolution,
|
5468 |
+
guidance_scale=7.5,
|
5469 |
+
image_guidance_scale=1.5,
|
5470 |
+
num_inference_steps=30,
|
5471 |
+
).images[0]
|
5472 |
+
|
5473 |
+
edited_image.save("edited_image.png")
|
5474 |
+
````
|
5475 |
+
|Original|Edited|
|
5476 |
+
|---|---|
|
5477 |
+
||
|
5478 |
+
|
5479 |
+
### Note
|
5480 |
+
This model is trained on 512x512, so input size is better on 512x512.
|
5481 |
+
For better editing performance, please refer to this powerful model https://huggingface.co/BleachNick/SD3_UltraEdit_freeform and Paper "UltraEdit: Instruction-based Fine-Grained Image
|
5482 |
+
Editing at Scale", many thanks to their contribution!
|
main/pipeline_stable_diffusion_3_instruct_pix2pix.py
ADDED
@@ -0,0 +1,1266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import PIL.Image
|
19 |
+
import torch
|
20 |
+
from transformers import (
|
21 |
+
CLIPTextModelWithProjection,
|
22 |
+
CLIPTokenizer,
|
23 |
+
SiglipImageProcessor,
|
24 |
+
SiglipVisionModel,
|
25 |
+
T5EncoderModel,
|
26 |
+
T5TokenizerFast,
|
27 |
+
)
|
28 |
+
|
29 |
+
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
30 |
+
from ...loaders import FromSingleFileMixin, SD3IPAdapterMixin, SD3LoraLoaderMixin
|
31 |
+
from ...models.autoencoders import AutoencoderKL
|
32 |
+
from ...models.transformers import SD3Transformer2DModel
|
33 |
+
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
34 |
+
from ...utils import (
|
35 |
+
USE_PEFT_BACKEND,
|
36 |
+
deprecate,
|
37 |
+
is_torch_xla_available,
|
38 |
+
logging,
|
39 |
+
replace_example_docstring,
|
40 |
+
scale_lora_layers,
|
41 |
+
unscale_lora_layers,
|
42 |
+
)
|
43 |
+
from ...utils.torch_utils import randn_tensor
|
44 |
+
from ..pipeline_utils import DiffusionPipeline
|
45 |
+
from .pipeline_output import StableDiffusion3PipelineOutput
|
46 |
+
|
47 |
+
|
48 |
+
if is_torch_xla_available():
|
49 |
+
import torch_xla.core.xla_model as xm
|
50 |
+
|
51 |
+
XLA_AVAILABLE = True
|
52 |
+
else:
|
53 |
+
XLA_AVAILABLE = False
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
57 |
+
|
58 |
+
EXAMPLE_DOC_STRING = """
|
59 |
+
Examples:
|
60 |
+
```py
|
61 |
+
>>> import torch
|
62 |
+
>>> from diffusers import StableDiffusion3InstructPix2PixPipeline
|
63 |
+
>>> from diffusers.utils import load_image
|
64 |
+
|
65 |
+
>>> resolution = 1024
|
66 |
+
>>> image = load_image(
|
67 |
+
... "https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png"
|
68 |
+
... ).resize((resolution, resolution))
|
69 |
+
>>> edit_instruction = "Turn sky into a cloudy one"
|
70 |
+
|
71 |
+
>>> pipe = StableDiffusion3InstructPix2PixPipeline.from_pretrained(
|
72 |
+
... "your_own_model_path", torch_dtype=torch.float16
|
73 |
+
... ).to("cuda")
|
74 |
+
|
75 |
+
>>> edited_image = pipe(
|
76 |
+
... prompt=edit_instruction,
|
77 |
+
... image=image,
|
78 |
+
... height=resolution,
|
79 |
+
... width=resolution,
|
80 |
+
... guidance_scale=7.5,
|
81 |
+
... image_guidance_scale=1.5,
|
82 |
+
... num_inference_steps=30,
|
83 |
+
... ).images[0]
|
84 |
+
>>> edited_image
|
85 |
+
```
|
86 |
+
"""
|
87 |
+
|
88 |
+
|
89 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
90 |
+
def calculate_shift(
|
91 |
+
image_seq_len,
|
92 |
+
base_seq_len: int = 256,
|
93 |
+
max_seq_len: int = 4096,
|
94 |
+
base_shift: float = 0.5,
|
95 |
+
max_shift: float = 1.15,
|
96 |
+
):
|
97 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
98 |
+
b = base_shift - m * base_seq_len
|
99 |
+
mu = image_seq_len * m + b
|
100 |
+
return mu
|
101 |
+
|
102 |
+
|
103 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
104 |
+
def retrieve_latents(
|
105 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
106 |
+
):
|
107 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
108 |
+
return encoder_output.latent_dist.sample(generator)
|
109 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
110 |
+
return encoder_output.latent_dist.mode()
|
111 |
+
elif hasattr(encoder_output, "latents"):
|
112 |
+
return encoder_output.latents
|
113 |
+
else:
|
114 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
115 |
+
|
116 |
+
|
117 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
118 |
+
def retrieve_timesteps(
|
119 |
+
scheduler,
|
120 |
+
num_inference_steps: Optional[int] = None,
|
121 |
+
device: Optional[Union[str, torch.device]] = None,
|
122 |
+
timesteps: Optional[List[int]] = None,
|
123 |
+
sigmas: Optional[List[float]] = None,
|
124 |
+
**kwargs,
|
125 |
+
):
|
126 |
+
r"""
|
127 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
128 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
scheduler (`SchedulerMixin`):
|
132 |
+
The scheduler to get timesteps from.
|
133 |
+
num_inference_steps (`int`):
|
134 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
135 |
+
must be `None`.
|
136 |
+
device (`str` or `torch.device`, *optional*):
|
137 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
138 |
+
timesteps (`List[int]`, *optional*):
|
139 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
140 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
141 |
+
sigmas (`List[float]`, *optional*):
|
142 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
143 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
147 |
+
second element is the number of inference steps.
|
148 |
+
"""
|
149 |
+
if timesteps is not None and sigmas is not None:
|
150 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
151 |
+
if timesteps is not None:
|
152 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
153 |
+
if not accepts_timesteps:
|
154 |
+
raise ValueError(
|
155 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
156 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
157 |
+
)
|
158 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
159 |
+
timesteps = scheduler.timesteps
|
160 |
+
num_inference_steps = len(timesteps)
|
161 |
+
elif sigmas is not None:
|
162 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
163 |
+
if not accept_sigmas:
|
164 |
+
raise ValueError(
|
165 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
166 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
167 |
+
)
|
168 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
169 |
+
timesteps = scheduler.timesteps
|
170 |
+
num_inference_steps = len(timesteps)
|
171 |
+
else:
|
172 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
173 |
+
timesteps = scheduler.timesteps
|
174 |
+
return timesteps, num_inference_steps
|
175 |
+
|
176 |
+
|
177 |
+
class StableDiffusion3InstructPix2PixPipeline(
|
178 |
+
DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin
|
179 |
+
):
|
180 |
+
r"""
|
181 |
+
Args:
|
182 |
+
transformer ([`SD3Transformer2DModel`]):
|
183 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
184 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
185 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
186 |
+
vae ([`AutoencoderKL`]):
|
187 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
188 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
189 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
190 |
+
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
191 |
+
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
192 |
+
as its dimension.
|
193 |
+
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
194 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
195 |
+
specifically the
|
196 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
197 |
+
variant.
|
198 |
+
text_encoder_3 ([`T5EncoderModel`]):
|
199 |
+
Frozen text-encoder. Stable Diffusion 3 uses
|
200 |
+
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
201 |
+
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
202 |
+
tokenizer (`CLIPTokenizer`):
|
203 |
+
Tokenizer of class
|
204 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
205 |
+
tokenizer_2 (`CLIPTokenizer`):
|
206 |
+
Second Tokenizer of class
|
207 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
208 |
+
tokenizer_3 (`T5TokenizerFast`):
|
209 |
+
Tokenizer of class
|
210 |
+
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
211 |
+
image_encoder (`SiglipVisionModel`, *optional*):
|
212 |
+
Pre-trained Vision Model for IP Adapter.
|
213 |
+
feature_extractor (`SiglipImageProcessor`, *optional*):
|
214 |
+
Image processor for IP Adapter.
|
215 |
+
"""
|
216 |
+
|
217 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae"
|
218 |
+
_optional_components = ["image_encoder", "feature_extractor"]
|
219 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
|
220 |
+
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
transformer: SD3Transformer2DModel,
|
224 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
225 |
+
vae: AutoencoderKL,
|
226 |
+
text_encoder: CLIPTextModelWithProjection,
|
227 |
+
tokenizer: CLIPTokenizer,
|
228 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
229 |
+
tokenizer_2: CLIPTokenizer,
|
230 |
+
text_encoder_3: T5EncoderModel,
|
231 |
+
tokenizer_3: T5TokenizerFast,
|
232 |
+
image_encoder: SiglipVisionModel = None,
|
233 |
+
feature_extractor: SiglipImageProcessor = None,
|
234 |
+
):
|
235 |
+
super().__init__()
|
236 |
+
|
237 |
+
self.register_modules(
|
238 |
+
vae=vae,
|
239 |
+
text_encoder=text_encoder,
|
240 |
+
text_encoder_2=text_encoder_2,
|
241 |
+
text_encoder_3=text_encoder_3,
|
242 |
+
tokenizer=tokenizer,
|
243 |
+
tokenizer_2=tokenizer_2,
|
244 |
+
tokenizer_3=tokenizer_3,
|
245 |
+
transformer=transformer,
|
246 |
+
scheduler=scheduler,
|
247 |
+
image_encoder=image_encoder,
|
248 |
+
feature_extractor=feature_extractor,
|
249 |
+
)
|
250 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
251 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
252 |
+
self.tokenizer_max_length = (
|
253 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
254 |
+
)
|
255 |
+
self.default_sample_size = (
|
256 |
+
self.transformer.config.sample_size
|
257 |
+
if hasattr(self, "transformer") and self.transformer is not None
|
258 |
+
else 128
|
259 |
+
)
|
260 |
+
self.patch_size = (
|
261 |
+
self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2
|
262 |
+
)
|
263 |
+
|
264 |
+
def _get_t5_prompt_embeds(
|
265 |
+
self,
|
266 |
+
prompt: Union[str, List[str]] = None,
|
267 |
+
num_images_per_prompt: int = 1,
|
268 |
+
max_sequence_length: int = 256,
|
269 |
+
device: Optional[torch.device] = None,
|
270 |
+
dtype: Optional[torch.dtype] = None,
|
271 |
+
):
|
272 |
+
device = device or self._execution_device
|
273 |
+
dtype = dtype or self.text_encoder.dtype
|
274 |
+
|
275 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
276 |
+
batch_size = len(prompt)
|
277 |
+
|
278 |
+
if self.text_encoder_3 is None:
|
279 |
+
return torch.zeros(
|
280 |
+
(
|
281 |
+
batch_size * num_images_per_prompt,
|
282 |
+
self.tokenizer_max_length,
|
283 |
+
self.transformer.config.joint_attention_dim,
|
284 |
+
),
|
285 |
+
device=device,
|
286 |
+
dtype=dtype,
|
287 |
+
)
|
288 |
+
|
289 |
+
text_inputs = self.tokenizer_3(
|
290 |
+
prompt,
|
291 |
+
padding="max_length",
|
292 |
+
max_length=max_sequence_length,
|
293 |
+
truncation=True,
|
294 |
+
add_special_tokens=True,
|
295 |
+
return_tensors="pt",
|
296 |
+
)
|
297 |
+
text_input_ids = text_inputs.input_ids
|
298 |
+
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
299 |
+
|
300 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
301 |
+
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
302 |
+
logger.warning(
|
303 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
304 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
305 |
+
)
|
306 |
+
|
307 |
+
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
308 |
+
|
309 |
+
dtype = self.text_encoder_3.dtype
|
310 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
311 |
+
|
312 |
+
_, seq_len, _ = prompt_embeds.shape
|
313 |
+
|
314 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
315 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
316 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
317 |
+
|
318 |
+
return prompt_embeds
|
319 |
+
|
320 |
+
def _get_clip_prompt_embeds(
|
321 |
+
self,
|
322 |
+
prompt: Union[str, List[str]],
|
323 |
+
num_images_per_prompt: int = 1,
|
324 |
+
device: Optional[torch.device] = None,
|
325 |
+
clip_skip: Optional[int] = None,
|
326 |
+
clip_model_index: int = 0,
|
327 |
+
):
|
328 |
+
device = device or self._execution_device
|
329 |
+
|
330 |
+
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
331 |
+
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
332 |
+
|
333 |
+
tokenizer = clip_tokenizers[clip_model_index]
|
334 |
+
text_encoder = clip_text_encoders[clip_model_index]
|
335 |
+
|
336 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
337 |
+
batch_size = len(prompt)
|
338 |
+
|
339 |
+
text_inputs = tokenizer(
|
340 |
+
prompt,
|
341 |
+
padding="max_length",
|
342 |
+
max_length=self.tokenizer_max_length,
|
343 |
+
truncation=True,
|
344 |
+
return_tensors="pt",
|
345 |
+
)
|
346 |
+
|
347 |
+
text_input_ids = text_inputs.input_ids
|
348 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
349 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
350 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
351 |
+
logger.warning(
|
352 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
353 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
354 |
+
)
|
355 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
356 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
357 |
+
|
358 |
+
if clip_skip is None:
|
359 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
360 |
+
else:
|
361 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
362 |
+
|
363 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
364 |
+
|
365 |
+
_, seq_len, _ = prompt_embeds.shape
|
366 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
367 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
368 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
369 |
+
|
370 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
371 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
372 |
+
|
373 |
+
return prompt_embeds, pooled_prompt_embeds
|
374 |
+
|
375 |
+
def encode_prompt(
|
376 |
+
self,
|
377 |
+
prompt: Union[str, List[str]],
|
378 |
+
prompt_2: Union[str, List[str]],
|
379 |
+
prompt_3: Union[str, List[str]],
|
380 |
+
device: Optional[torch.device] = None,
|
381 |
+
num_images_per_prompt: int = 1,
|
382 |
+
do_classifier_free_guidance: bool = True,
|
383 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
384 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
385 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
386 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
387 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
388 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
389 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
390 |
+
clip_skip: Optional[int] = None,
|
391 |
+
max_sequence_length: int = 256,
|
392 |
+
lora_scale: Optional[float] = None,
|
393 |
+
):
|
394 |
+
r"""
|
395 |
+
|
396 |
+
Args:
|
397 |
+
prompt (`str` or `List[str]`, *optional*):
|
398 |
+
prompt to be encoded
|
399 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
400 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
401 |
+
used in all text-encoders
|
402 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
403 |
+
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
404 |
+
used in all text-encoders
|
405 |
+
device: (`torch.device`):
|
406 |
+
torch device
|
407 |
+
num_images_per_prompt (`int`):
|
408 |
+
number of images that should be generated per prompt
|
409 |
+
do_classifier_free_guidance (`bool`):
|
410 |
+
whether to use classifier free guidance or not
|
411 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
412 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
413 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
414 |
+
less than `1`).
|
415 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
416 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
417 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
418 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
419 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
420 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders.
|
421 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
422 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
423 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
424 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
425 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
426 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
427 |
+
argument.
|
428 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
429 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
430 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
431 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
432 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
433 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
434 |
+
input argument.
|
435 |
+
clip_skip (`int`, *optional*):
|
436 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
437 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
438 |
+
lora_scale (`float`, *optional*):
|
439 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
440 |
+
"""
|
441 |
+
device = device or self._execution_device
|
442 |
+
|
443 |
+
# set lora scale so that monkey patched LoRA
|
444 |
+
# function of text encoder can correctly access it
|
445 |
+
if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin):
|
446 |
+
self._lora_scale = lora_scale
|
447 |
+
|
448 |
+
# dynamically adjust the LoRA scale
|
449 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
450 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
451 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
452 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
453 |
+
|
454 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
455 |
+
if prompt is not None:
|
456 |
+
batch_size = len(prompt)
|
457 |
+
else:
|
458 |
+
batch_size = prompt_embeds.shape[0]
|
459 |
+
|
460 |
+
if prompt_embeds is None:
|
461 |
+
prompt_2 = prompt_2 or prompt
|
462 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
463 |
+
|
464 |
+
prompt_3 = prompt_3 or prompt
|
465 |
+
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
466 |
+
|
467 |
+
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
468 |
+
prompt=prompt,
|
469 |
+
device=device,
|
470 |
+
num_images_per_prompt=num_images_per_prompt,
|
471 |
+
clip_skip=clip_skip,
|
472 |
+
clip_model_index=0,
|
473 |
+
)
|
474 |
+
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
475 |
+
prompt=prompt_2,
|
476 |
+
device=device,
|
477 |
+
num_images_per_prompt=num_images_per_prompt,
|
478 |
+
clip_skip=clip_skip,
|
479 |
+
clip_model_index=1,
|
480 |
+
)
|
481 |
+
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
482 |
+
|
483 |
+
t5_prompt_embed = self._get_t5_prompt_embeds(
|
484 |
+
prompt=prompt_3,
|
485 |
+
num_images_per_prompt=num_images_per_prompt,
|
486 |
+
max_sequence_length=max_sequence_length,
|
487 |
+
device=device,
|
488 |
+
)
|
489 |
+
|
490 |
+
clip_prompt_embeds = torch.nn.functional.pad(
|
491 |
+
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
|
492 |
+
)
|
493 |
+
|
494 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
495 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
496 |
+
|
497 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
498 |
+
negative_prompt = negative_prompt or ""
|
499 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
500 |
+
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
501 |
+
|
502 |
+
# normalize str to list
|
503 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
504 |
+
negative_prompt_2 = (
|
505 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
506 |
+
)
|
507 |
+
negative_prompt_3 = (
|
508 |
+
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
509 |
+
)
|
510 |
+
|
511 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
512 |
+
raise TypeError(
|
513 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
514 |
+
f" {type(prompt)}."
|
515 |
+
)
|
516 |
+
elif batch_size != len(negative_prompt):
|
517 |
+
raise ValueError(
|
518 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
519 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
520 |
+
" the batch size of `prompt`."
|
521 |
+
)
|
522 |
+
|
523 |
+
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
|
524 |
+
negative_prompt,
|
525 |
+
device=device,
|
526 |
+
num_images_per_prompt=num_images_per_prompt,
|
527 |
+
clip_skip=None,
|
528 |
+
clip_model_index=0,
|
529 |
+
)
|
530 |
+
negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
531 |
+
negative_prompt_2,
|
532 |
+
device=device,
|
533 |
+
num_images_per_prompt=num_images_per_prompt,
|
534 |
+
clip_skip=None,
|
535 |
+
clip_model_index=1,
|
536 |
+
)
|
537 |
+
negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
|
538 |
+
|
539 |
+
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
540 |
+
prompt=negative_prompt_3,
|
541 |
+
num_images_per_prompt=num_images_per_prompt,
|
542 |
+
max_sequence_length=max_sequence_length,
|
543 |
+
device=device,
|
544 |
+
)
|
545 |
+
|
546 |
+
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
547 |
+
negative_clip_prompt_embeds,
|
548 |
+
(0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
|
549 |
+
)
|
550 |
+
|
551 |
+
negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
|
552 |
+
negative_pooled_prompt_embeds = torch.cat(
|
553 |
+
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
554 |
+
)
|
555 |
+
|
556 |
+
if self.text_encoder is not None:
|
557 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
558 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
559 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
560 |
+
|
561 |
+
if self.text_encoder_2 is not None:
|
562 |
+
if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND:
|
563 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
564 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
565 |
+
|
566 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
567 |
+
|
568 |
+
def check_inputs(
|
569 |
+
self,
|
570 |
+
prompt,
|
571 |
+
prompt_2,
|
572 |
+
prompt_3,
|
573 |
+
height,
|
574 |
+
width,
|
575 |
+
negative_prompt=None,
|
576 |
+
negative_prompt_2=None,
|
577 |
+
negative_prompt_3=None,
|
578 |
+
prompt_embeds=None,
|
579 |
+
negative_prompt_embeds=None,
|
580 |
+
pooled_prompt_embeds=None,
|
581 |
+
negative_pooled_prompt_embeds=None,
|
582 |
+
callback_on_step_end_tensor_inputs=None,
|
583 |
+
max_sequence_length=None,
|
584 |
+
):
|
585 |
+
if (
|
586 |
+
height % (self.vae_scale_factor * self.patch_size) != 0
|
587 |
+
or width % (self.vae_scale_factor * self.patch_size) != 0
|
588 |
+
):
|
589 |
+
raise ValueError(
|
590 |
+
f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
|
591 |
+
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}."
|
592 |
+
)
|
593 |
+
|
594 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
595 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
596 |
+
):
|
597 |
+
raise ValueError(
|
598 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
599 |
+
)
|
600 |
+
|
601 |
+
if prompt is not None and prompt_embeds is not None:
|
602 |
+
raise ValueError(
|
603 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
604 |
+
" only forward one of the two."
|
605 |
+
)
|
606 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
607 |
+
raise ValueError(
|
608 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
609 |
+
" only forward one of the two."
|
610 |
+
)
|
611 |
+
elif prompt_3 is not None and prompt_embeds is not None:
|
612 |
+
raise ValueError(
|
613 |
+
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
614 |
+
" only forward one of the two."
|
615 |
+
)
|
616 |
+
elif prompt is None and prompt_embeds is None:
|
617 |
+
raise ValueError(
|
618 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
619 |
+
)
|
620 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
621 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
622 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
623 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
624 |
+
elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
|
625 |
+
raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
|
626 |
+
|
627 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
628 |
+
raise ValueError(
|
629 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
630 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
631 |
+
)
|
632 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
633 |
+
raise ValueError(
|
634 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
635 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
636 |
+
)
|
637 |
+
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
638 |
+
raise ValueError(
|
639 |
+
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
640 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
641 |
+
)
|
642 |
+
|
643 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
644 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
645 |
+
raise ValueError(
|
646 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
647 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
648 |
+
f" {negative_prompt_embeds.shape}."
|
649 |
+
)
|
650 |
+
|
651 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
652 |
+
raise ValueError(
|
653 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
654 |
+
)
|
655 |
+
|
656 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
657 |
+
raise ValueError(
|
658 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
659 |
+
)
|
660 |
+
|
661 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
662 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
663 |
+
|
664 |
+
def prepare_latents(
|
665 |
+
self,
|
666 |
+
batch_size,
|
667 |
+
num_channels_latents,
|
668 |
+
height,
|
669 |
+
width,
|
670 |
+
dtype,
|
671 |
+
device,
|
672 |
+
generator,
|
673 |
+
latents=None,
|
674 |
+
):
|
675 |
+
if latents is not None:
|
676 |
+
return latents.to(device=device, dtype=dtype)
|
677 |
+
|
678 |
+
shape = (
|
679 |
+
batch_size,
|
680 |
+
num_channels_latents,
|
681 |
+
int(height) // self.vae_scale_factor,
|
682 |
+
int(width) // self.vae_scale_factor,
|
683 |
+
)
|
684 |
+
|
685 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
686 |
+
raise ValueError(
|
687 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
688 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
689 |
+
)
|
690 |
+
|
691 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
692 |
+
|
693 |
+
return latents
|
694 |
+
|
695 |
+
def prepare_image_latents(
|
696 |
+
self,
|
697 |
+
image,
|
698 |
+
batch_size,
|
699 |
+
num_images_per_prompt,
|
700 |
+
dtype,
|
701 |
+
device,
|
702 |
+
generator,
|
703 |
+
do_classifier_free_guidance,
|
704 |
+
):
|
705 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
706 |
+
raise ValueError(
|
707 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
708 |
+
)
|
709 |
+
|
710 |
+
image = image.to(device=device, dtype=dtype)
|
711 |
+
|
712 |
+
batch_size = batch_size * num_images_per_prompt
|
713 |
+
|
714 |
+
if image.shape[1] == self.vae.config.latent_channels:
|
715 |
+
image_latents = image
|
716 |
+
else:
|
717 |
+
image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax", generator=generator)
|
718 |
+
|
719 |
+
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
720 |
+
|
721 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
722 |
+
# expand image_latents for batch_size
|
723 |
+
deprecation_message = (
|
724 |
+
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
|
725 |
+
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
726 |
+
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
727 |
+
" your script to pass as many initial images as text prompts to suppress this warning."
|
728 |
+
)
|
729 |
+
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
730 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
731 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
732 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
733 |
+
raise ValueError(
|
734 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
735 |
+
)
|
736 |
+
else:
|
737 |
+
image_latents = torch.cat([image_latents], dim=0)
|
738 |
+
|
739 |
+
if do_classifier_free_guidance:
|
740 |
+
uncond_image_latents = torch.zeros_like(image_latents)
|
741 |
+
image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0)
|
742 |
+
|
743 |
+
return image_latents
|
744 |
+
|
745 |
+
@property
|
746 |
+
def guidance_scale(self):
|
747 |
+
return self._guidance_scale
|
748 |
+
|
749 |
+
@property
|
750 |
+
def image_guidance_scale(self):
|
751 |
+
return self._image_guidance_scale
|
752 |
+
|
753 |
+
@property
|
754 |
+
def skip_guidance_layers(self):
|
755 |
+
return self._skip_guidance_layers
|
756 |
+
|
757 |
+
@property
|
758 |
+
def clip_skip(self):
|
759 |
+
return self._clip_skip
|
760 |
+
|
761 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
762 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
763 |
+
# corresponds to doing no classifier free guidance.
|
764 |
+
@property
|
765 |
+
def do_classifier_free_guidance(self):
|
766 |
+
return self._guidance_scale > 1.0 and self.image_guidance_scale >= 1.0
|
767 |
+
|
768 |
+
@property
|
769 |
+
def joint_attention_kwargs(self):
|
770 |
+
return self._joint_attention_kwargs
|
771 |
+
|
772 |
+
@property
|
773 |
+
def num_timesteps(self):
|
774 |
+
return self._num_timesteps
|
775 |
+
|
776 |
+
@property
|
777 |
+
def interrupt(self):
|
778 |
+
return self._interrupt
|
779 |
+
|
780 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_image
|
781 |
+
def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor:
|
782 |
+
"""Encodes the given image into a feature representation using a pre-trained image encoder.
|
783 |
+
|
784 |
+
Args:
|
785 |
+
image (`PipelineImageInput`):
|
786 |
+
Input image to be encoded.
|
787 |
+
device: (`torch.device`):
|
788 |
+
Torch device.
|
789 |
+
|
790 |
+
Returns:
|
791 |
+
`torch.Tensor`: The encoded image feature representation.
|
792 |
+
"""
|
793 |
+
if not isinstance(image, torch.Tensor):
|
794 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
795 |
+
|
796 |
+
image = image.to(device=device, dtype=self.dtype)
|
797 |
+
|
798 |
+
return self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
799 |
+
|
800 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.prepare_ip_adapter_image_embeds
|
801 |
+
def prepare_ip_adapter_image_embeds(
|
802 |
+
self,
|
803 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
804 |
+
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
|
805 |
+
device: Optional[torch.device] = None,
|
806 |
+
num_images_per_prompt: int = 1,
|
807 |
+
do_classifier_free_guidance: bool = True,
|
808 |
+
) -> torch.Tensor:
|
809 |
+
"""Prepares image embeddings for use in the IP-Adapter.
|
810 |
+
|
811 |
+
Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed.
|
812 |
+
|
813 |
+
Args:
|
814 |
+
ip_adapter_image (`PipelineImageInput`, *optional*):
|
815 |
+
The input image to extract features from for IP-Adapter.
|
816 |
+
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
|
817 |
+
Precomputed image embeddings.
|
818 |
+
device: (`torch.device`, *optional*):
|
819 |
+
Torch device.
|
820 |
+
num_images_per_prompt (`int`, defaults to 1):
|
821 |
+
Number of images that should be generated per prompt.
|
822 |
+
do_classifier_free_guidance (`bool`, defaults to True):
|
823 |
+
Whether to use classifier free guidance or not.
|
824 |
+
"""
|
825 |
+
device = device or self._execution_device
|
826 |
+
|
827 |
+
if ip_adapter_image_embeds is not None:
|
828 |
+
if do_classifier_free_guidance:
|
829 |
+
single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2)
|
830 |
+
else:
|
831 |
+
single_image_embeds = ip_adapter_image_embeds
|
832 |
+
elif ip_adapter_image is not None:
|
833 |
+
single_image_embeds = self.encode_image(ip_adapter_image, device)
|
834 |
+
if do_classifier_free_guidance:
|
835 |
+
single_negative_image_embeds = torch.zeros_like(single_image_embeds)
|
836 |
+
else:
|
837 |
+
raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.")
|
838 |
+
|
839 |
+
image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
840 |
+
|
841 |
+
if do_classifier_free_guidance:
|
842 |
+
negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0)
|
843 |
+
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
|
844 |
+
|
845 |
+
return image_embeds.to(device=device)
|
846 |
+
|
847 |
+
def enable_sequential_cpu_offload(self, *args, **kwargs):
|
848 |
+
if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload:
|
849 |
+
logger.warning(
|
850 |
+
"`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses "
|
851 |
+
"`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling "
|
852 |
+
"`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`."
|
853 |
+
)
|
854 |
+
|
855 |
+
super().enable_sequential_cpu_offload(*args, **kwargs)
|
856 |
+
|
857 |
+
@torch.no_grad()
|
858 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
859 |
+
def __call__(
|
860 |
+
self,
|
861 |
+
prompt: Union[str, List[str]] = None,
|
862 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
863 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
864 |
+
image: PipelineImageInput = None,
|
865 |
+
height: Optional[int] = None,
|
866 |
+
width: Optional[int] = None,
|
867 |
+
num_inference_steps: int = 28,
|
868 |
+
sigmas: Optional[List[float]] = None,
|
869 |
+
guidance_scale: float = 7.0,
|
870 |
+
image_guidance_scale: float = 1.5,
|
871 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
872 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
873 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
874 |
+
num_images_per_prompt: Optional[int] = 1,
|
875 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
876 |
+
latents: Optional[torch.FloatTensor] = None,
|
877 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
878 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
879 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
880 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
881 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
882 |
+
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
|
883 |
+
output_type: Optional[str] = "pil",
|
884 |
+
return_dict: bool = True,
|
885 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
886 |
+
clip_skip: Optional[int] = None,
|
887 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
888 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
889 |
+
max_sequence_length: int = 256,
|
890 |
+
skip_guidance_layers: List[int] = None,
|
891 |
+
skip_layer_guidance_scale: float = 2.8,
|
892 |
+
skip_layer_guidance_stop: float = 0.2,
|
893 |
+
skip_layer_guidance_start: float = 0.01,
|
894 |
+
mu: Optional[float] = None,
|
895 |
+
):
|
896 |
+
r"""
|
897 |
+
Function invoked when calling the pipeline for generation.
|
898 |
+
|
899 |
+
Args:
|
900 |
+
prompt (`str` or `List[str]`, *optional*):
|
901 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
902 |
+
instead.
|
903 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
904 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
905 |
+
will be used instead
|
906 |
+
prompt_3 (`str` or `List[str]`, *optional*):
|
907 |
+
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
908 |
+
will be used instead
|
909 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
910 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
911 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
912 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
913 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
914 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
915 |
+
expense of slower inference.
|
916 |
+
sigmas (`List[float]`, *optional*):
|
917 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
918 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
919 |
+
will be used.
|
920 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
921 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
922 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
923 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
924 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
925 |
+
usually at the expense of lower image quality.
|
926 |
+
image_guidance_scale (`float`, *optional*, defaults to 1.5):
|
927 |
+
Image guidance scale is to push the generated image towards the initial image `image`. Image guidance
|
928 |
+
scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to
|
929 |
+
generate images that are closely linked to the source image `image`, usually at the expense of lower
|
930 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
931 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
932 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
933 |
+
less than `1`).
|
934 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
935 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
936 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
937 |
+
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
938 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
939 |
+
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
940 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
941 |
+
The number of images to generate per prompt.
|
942 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
943 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
944 |
+
to make generation deterministic.
|
945 |
+
latents (`torch.FloatTensor`, *optional*):
|
946 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
947 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
948 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
949 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
950 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
951 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
952 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
953 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
954 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
955 |
+
argument.
|
956 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
957 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
958 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
959 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
960 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
961 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
962 |
+
input argument.
|
963 |
+
ip_adapter_image (`PipelineImageInput`, *optional*):
|
964 |
+
Optional image input to work with IP Adapters.
|
965 |
+
ip_adapter_image_embeds (`torch.Tensor`, *optional*):
|
966 |
+
Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape `(batch_size, num_images,
|
967 |
+
emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to
|
968 |
+
`True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
969 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
970 |
+
The output format of the generate image. Choose between
|
971 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
972 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
973 |
+
Whether or not to return a [`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] instead of
|
974 |
+
a plain tuple.
|
975 |
+
joint_attention_kwargs (`dict`, *optional*):
|
976 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
977 |
+
`self.processor` in
|
978 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
979 |
+
callback_on_step_end (`Callable`, *optional*):
|
980 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
981 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
982 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
983 |
+
`callback_on_step_end_tensor_inputs`.
|
984 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
985 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
986 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
987 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
988 |
+
max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
|
989 |
+
skip_guidance_layers (`List[int]`, *optional*):
|
990 |
+
A list of integers that specify layers to skip during guidance. If not provided, all layers will be
|
991 |
+
used for guidance. If provided, the guidance will only be applied to the layers specified in the list.
|
992 |
+
Recommended value by StabiltyAI for Stable Diffusion 3.5 Medium is [7, 8, 9].
|
993 |
+
skip_layer_guidance_scale (`int`, *optional*): The scale of the guidance for the layers specified in
|
994 |
+
`skip_guidance_layers`. The guidance will be applied to the layers specified in `skip_guidance_layers`
|
995 |
+
with a scale of `skip_layer_guidance_scale`. The guidance will be applied to the rest of the layers
|
996 |
+
with a scale of `1`.
|
997 |
+
skip_layer_guidance_stop (`int`, *optional*): The step at which the guidance for the layers specified in
|
998 |
+
`skip_guidance_layers` will stop. The guidance will be applied to the layers specified in
|
999 |
+
`skip_guidance_layers` until the fraction specified in `skip_layer_guidance_stop`. Recommended value by
|
1000 |
+
StabiltyAI for Stable Diffusion 3.5 Medium is 0.2.
|
1001 |
+
skip_layer_guidance_start (`int`, *optional*): The step at which the guidance for the layers specified in
|
1002 |
+
`skip_guidance_layers` will start. The guidance will be applied to the layers specified in
|
1003 |
+
`skip_guidance_layers` from the fraction specified in `skip_layer_guidance_start`. Recommended value by
|
1004 |
+
StabiltyAI for Stable Diffusion 3.5 Medium is 0.01.
|
1005 |
+
mu (`float`, *optional*): `mu` value used for `dynamic_shifting`.
|
1006 |
+
|
1007 |
+
Examples:
|
1008 |
+
|
1009 |
+
Returns:
|
1010 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] or `tuple`:
|
1011 |
+
[`~pipelines.stable_diffusion_3.StableDiffusion3PipelineOutput`] if `return_dict` is True, otherwise a
|
1012 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
1013 |
+
"""
|
1014 |
+
|
1015 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
1016 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
1017 |
+
|
1018 |
+
# 1. Check inputs. Raise error if not correct
|
1019 |
+
self.check_inputs(
|
1020 |
+
prompt,
|
1021 |
+
prompt_2,
|
1022 |
+
prompt_3,
|
1023 |
+
height,
|
1024 |
+
width,
|
1025 |
+
negative_prompt=negative_prompt,
|
1026 |
+
negative_prompt_2=negative_prompt_2,
|
1027 |
+
negative_prompt_3=negative_prompt_3,
|
1028 |
+
prompt_embeds=prompt_embeds,
|
1029 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1030 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1031 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1032 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
1033 |
+
max_sequence_length=max_sequence_length,
|
1034 |
+
)
|
1035 |
+
|
1036 |
+
self._guidance_scale = guidance_scale
|
1037 |
+
self._image_guidance_scale = image_guidance_scale
|
1038 |
+
self._skip_layer_guidance_scale = skip_layer_guidance_scale
|
1039 |
+
self._clip_skip = clip_skip
|
1040 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
1041 |
+
self._interrupt = False
|
1042 |
+
|
1043 |
+
# 2. Define call parameters
|
1044 |
+
if prompt is not None and isinstance(prompt, str):
|
1045 |
+
batch_size = 1
|
1046 |
+
elif prompt is not None and isinstance(prompt, list):
|
1047 |
+
batch_size = len(prompt)
|
1048 |
+
else:
|
1049 |
+
batch_size = prompt_embeds.shape[0]
|
1050 |
+
|
1051 |
+
device = self._execution_device
|
1052 |
+
|
1053 |
+
lora_scale = (
|
1054 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
1055 |
+
)
|
1056 |
+
(
|
1057 |
+
prompt_embeds,
|
1058 |
+
negative_prompt_embeds,
|
1059 |
+
pooled_prompt_embeds,
|
1060 |
+
negative_pooled_prompt_embeds,
|
1061 |
+
) = self.encode_prompt(
|
1062 |
+
prompt=prompt,
|
1063 |
+
prompt_2=prompt_2,
|
1064 |
+
prompt_3=prompt_3,
|
1065 |
+
negative_prompt=negative_prompt,
|
1066 |
+
negative_prompt_2=negative_prompt_2,
|
1067 |
+
negative_prompt_3=negative_prompt_3,
|
1068 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1069 |
+
prompt_embeds=prompt_embeds,
|
1070 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1071 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1072 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1073 |
+
device=device,
|
1074 |
+
clip_skip=self.clip_skip,
|
1075 |
+
num_images_per_prompt=num_images_per_prompt,
|
1076 |
+
max_sequence_length=max_sequence_length,
|
1077 |
+
lora_scale=lora_scale,
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
if self.do_classifier_free_guidance:
|
1081 |
+
if skip_guidance_layers is not None:
|
1082 |
+
original_prompt_embeds = prompt_embeds
|
1083 |
+
original_pooled_prompt_embeds = pooled_prompt_embeds
|
1084 |
+
# The extra concat similar to how it's done in SD InstructPix2Pix.
|
1085 |
+
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0)
|
1086 |
+
pooled_prompt_embeds = torch.cat(
|
1087 |
+
[pooled_prompt_embeds, negative_pooled_prompt_embeds, negative_pooled_prompt_embeds], dim=0
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
# 4. Prepare latent variables
|
1091 |
+
num_channels_latents = self.vae.config.latent_channels
|
1092 |
+
latents = self.prepare_latents(
|
1093 |
+
batch_size * num_images_per_prompt,
|
1094 |
+
num_channels_latents,
|
1095 |
+
height,
|
1096 |
+
width,
|
1097 |
+
prompt_embeds.dtype,
|
1098 |
+
device,
|
1099 |
+
generator,
|
1100 |
+
latents,
|
1101 |
+
)
|
1102 |
+
# 5. Prepare image latents
|
1103 |
+
image = self.image_processor.preprocess(image)
|
1104 |
+
image_latents = self.prepare_image_latents(
|
1105 |
+
image,
|
1106 |
+
batch_size,
|
1107 |
+
num_images_per_prompt,
|
1108 |
+
prompt_embeds.dtype,
|
1109 |
+
device,
|
1110 |
+
generator,
|
1111 |
+
self.do_classifier_free_guidance,
|
1112 |
+
)
|
1113 |
+
|
1114 |
+
# 6. Check that shapes of latents and image match the DiT (SD3) in_channels
|
1115 |
+
num_channels_image = image_latents.shape[1]
|
1116 |
+
if num_channels_latents + num_channels_image != self.transformer.config.in_channels:
|
1117 |
+
raise ValueError(
|
1118 |
+
f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects"
|
1119 |
+
f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1120 |
+
f" `num_channels_image`: {num_channels_image} "
|
1121 |
+
f" = {num_channels_latents + num_channels_image}. Please verify the config of"
|
1122 |
+
" `pipeline.transformer` or your `image` input."
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
# 7. Prepare timesteps
|
1126 |
+
scheduler_kwargs = {}
|
1127 |
+
if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None:
|
1128 |
+
_, _, height, width = latents.shape
|
1129 |
+
image_seq_len = (height // self.transformer.config.patch_size) * (
|
1130 |
+
width // self.transformer.config.patch_size
|
1131 |
+
)
|
1132 |
+
mu = calculate_shift(
|
1133 |
+
image_seq_len,
|
1134 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
1135 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
1136 |
+
self.scheduler.config.get("base_shift", 0.5),
|
1137 |
+
self.scheduler.config.get("max_shift", 1.16),
|
1138 |
+
)
|
1139 |
+
scheduler_kwargs["mu"] = mu
|
1140 |
+
elif mu is not None:
|
1141 |
+
scheduler_kwargs["mu"] = mu
|
1142 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1143 |
+
self.scheduler,
|
1144 |
+
num_inference_steps,
|
1145 |
+
device,
|
1146 |
+
sigmas=sigmas,
|
1147 |
+
**scheduler_kwargs,
|
1148 |
+
)
|
1149 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1150 |
+
self._num_timesteps = len(timesteps)
|
1151 |
+
|
1152 |
+
# 8. Prepare image embeddings
|
1153 |
+
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None:
|
1154 |
+
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
|
1155 |
+
ip_adapter_image,
|
1156 |
+
ip_adapter_image_embeds,
|
1157 |
+
device,
|
1158 |
+
batch_size * num_images_per_prompt,
|
1159 |
+
self.do_classifier_free_guidance,
|
1160 |
+
)
|
1161 |
+
|
1162 |
+
if self.joint_attention_kwargs is None:
|
1163 |
+
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds}
|
1164 |
+
else:
|
1165 |
+
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds)
|
1166 |
+
|
1167 |
+
# 9. Denoising loop
|
1168 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1169 |
+
for i, t in enumerate(timesteps):
|
1170 |
+
if self.interrupt:
|
1171 |
+
continue
|
1172 |
+
|
1173 |
+
# expand the latents if we are doing classifier free guidance
|
1174 |
+
# The latents are expanded 3 times because for pix2pix the guidance
|
1175 |
+
# is applied for both the text and the input image.
|
1176 |
+
latent_model_input = torch.cat([latents] * 3) if self.do_classifier_free_guidance else latents
|
1177 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1178 |
+
timestep = t.expand(latent_model_input.shape[0])
|
1179 |
+
scaled_latent_model_input = torch.cat([latent_model_input, image_latents], dim=1)
|
1180 |
+
|
1181 |
+
noise_pred = self.transformer(
|
1182 |
+
hidden_states=scaled_latent_model_input,
|
1183 |
+
timestep=timestep,
|
1184 |
+
encoder_hidden_states=prompt_embeds,
|
1185 |
+
pooled_projections=pooled_prompt_embeds,
|
1186 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1187 |
+
return_dict=False,
|
1188 |
+
)[0]
|
1189 |
+
|
1190 |
+
# perform guidance
|
1191 |
+
if self.do_classifier_free_guidance:
|
1192 |
+
noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
|
1193 |
+
noise_pred = (
|
1194 |
+
noise_pred_uncond
|
1195 |
+
+ self.guidance_scale * (noise_pred_text - noise_pred_image)
|
1196 |
+
+ self.image_guidance_scale * (noise_pred_image - noise_pred_uncond)
|
1197 |
+
)
|
1198 |
+
should_skip_layers = (
|
1199 |
+
True
|
1200 |
+
if i > num_inference_steps * skip_layer_guidance_start
|
1201 |
+
and i < num_inference_steps * skip_layer_guidance_stop
|
1202 |
+
else False
|
1203 |
+
)
|
1204 |
+
if skip_guidance_layers is not None and should_skip_layers:
|
1205 |
+
timestep = t.expand(latents.shape[0])
|
1206 |
+
latent_model_input = latents
|
1207 |
+
noise_pred_skip_layers = self.transformer(
|
1208 |
+
hidden_states=latent_model_input,
|
1209 |
+
timestep=timestep,
|
1210 |
+
encoder_hidden_states=original_prompt_embeds,
|
1211 |
+
pooled_projections=original_pooled_prompt_embeds,
|
1212 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
1213 |
+
return_dict=False,
|
1214 |
+
skip_layers=skip_guidance_layers,
|
1215 |
+
)[0]
|
1216 |
+
noise_pred = (
|
1217 |
+
noise_pred + (noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1221 |
+
latents_dtype = latents.dtype
|
1222 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
1223 |
+
|
1224 |
+
if latents.dtype != latents_dtype:
|
1225 |
+
if torch.backends.mps.is_available():
|
1226 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1227 |
+
latents = latents.to(latents_dtype)
|
1228 |
+
|
1229 |
+
if callback_on_step_end is not None:
|
1230 |
+
callback_kwargs = {}
|
1231 |
+
for k in callback_on_step_end_tensor_inputs:
|
1232 |
+
callback_kwargs[k] = locals()[k]
|
1233 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1234 |
+
|
1235 |
+
latents = callback_outputs.pop("latents", latents)
|
1236 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1237 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1238 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1239 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1240 |
+
)
|
1241 |
+
image_latents = callback_outputs.pop("image_latents", image_latents)
|
1242 |
+
|
1243 |
+
# call the callback, if provided
|
1244 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1245 |
+
progress_bar.update()
|
1246 |
+
|
1247 |
+
if XLA_AVAILABLE:
|
1248 |
+
xm.mark_step()
|
1249 |
+
|
1250 |
+
if output_type == "latent":
|
1251 |
+
image = latents
|
1252 |
+
|
1253 |
+
else:
|
1254 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
1255 |
+
latents = latents.to(dtype=self.vae.dtype)
|
1256 |
+
|
1257 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1258 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1259 |
+
|
1260 |
+
# Offload all models
|
1261 |
+
self.maybe_free_model_hooks()
|
1262 |
+
|
1263 |
+
if not return_dict:
|
1264 |
+
return (image,)
|
1265 |
+
|
1266 |
+
return StableDiffusion3PipelineOutput(images=image)
|