diff --git "a/v0.26.0/pipeline_sdxl_style_aligned.py" "b/v0.26.0/pipeline_sdxl_style_aligned.py"
new file mode 100644--- /dev/null
+++ "b/v0.26.0/pipeline_sdxl_style_aligned.py"
@@ -0,0 +1,2025 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+# Based on [Style Aligned Image Generation via Shared Attention](https://arxiv.org/abs/2312.02133).
+# Authors: Amir Hertz, Andrey Voynov, Shlomi Fruchter, Daniel Cohen-Or
+# Project Page: https://style-aligned-gen.github.io/
+# Code: https://github.com/google/style-aligned
+#
+# Adapted to Diffusers by [Aryan V S](https://github.com/a-r-r-o-w/).
+
+import inspect
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from PIL import Image
+from transformers import (
+    CLIPImageProcessor,
+    CLIPTextModel,
+    CLIPTextModelWithProjection,
+    CLIPTokenizer,
+    CLIPVisionModelWithProjection,
+)
+
+from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
+from diffusers.loaders import (
+    FromSingleFileMixin,
+    IPAdapterMixin,
+    StableDiffusionXLLoraLoaderMixin,
+    TextualInversionLoaderMixin,
+)
+from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
+from diffusers.models.attention_processor import (
+    Attention,
+    AttnProcessor2_0,
+    FusedAttnProcessor2_0,
+    LoRAAttnProcessor2_0,
+    LoRAXFormersAttnProcessor,
+    XFormersAttnProcessor,
+)
+from diffusers.models.lora import adjust_lora_scale_text_encoder
+from diffusers.pipelines.pipeline_utils import DiffusionPipeline
+from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
+from diffusers.schedulers import KarrasDiffusionSchedulers
+from diffusers.utils import (
+    USE_PEFT_BACKEND,
+    deprecate,
+    is_invisible_watermark_available,
+    is_torch_xla_available,
+    logging,
+    replace_example_docstring,
+    scale_lora_layers,
+    unscale_lora_layers,
+)
+from diffusers.utils.torch_utils import randn_tensor
+
+
+if is_invisible_watermark_available():
+    from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
+
+if is_torch_xla_available():
+    import torch_xla.core.xla_model as xm
+
+    XLA_AVAILABLE = True
+else:
+    XLA_AVAILABLE = False
+
+logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
+
+EXAMPLE_DOC_STRING = """
+    Examples:
+        ```py
+        >>> from typing import List
+
+        >>> import torch
+        >>> from diffusers.pipelines.pipeline_utils import DiffusionPipeline
+        >>> from PIL import Image
+
+        >>> model_id = "a-r-r-o-w/dreamshaper-xl-turbo"
+        >>> pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", custom_pipeline="pipeline_sdxl_style_aligned")
+        >>> pipe = pipe.to("cuda")
+
+        # Enable memory saving techniques
+        >>> pipe.enable_vae_slicing()
+        >>> pipe.enable_vae_tiling()
+
+        >>> prompt = [
+        ...     "a toy train. macro photo. 3d game asset",
+        ...     "a toy airplane. macro photo. 3d game asset",
+        ...     "a toy bicycle. macro photo. 3d game asset",
+        ...     "a toy car. macro photo. 3d game asset",
+        ... ]
+        >>> negative_prompt = "low quality, worst quality, "
+
+        >>> # Enable StyleAligned
+        >>> pipe.enable_style_aligned(
+        ...     share_group_norm=False,
+        ...     share_layer_norm=False,
+        ...     share_attention=True,
+        ...     adain_queries=True,
+        ...     adain_keys=True,
+        ...     adain_values=False,
+        ...     full_attention_share=False,
+        ...     shared_score_scale=1.0,
+        ...     shared_score_shift=0.0,
+        ...     only_self_level=0.0,
+        >>> )
+
+        >>> # Run inference
+        >>> images = pipe(
+        ...     prompt=prompt,
+        ...     negative_prompt=negative_prompt,
+        ...     guidance_scale=2,
+        ...     height=1024,
+        ...     width=1024,
+        ...     num_inference_steps=10,
+        ...     generator=torch.Generator().manual_seed(42),
+        >>> ).images
+
+        >>> # Disable StyleAligned if you do not wish to use it anymore
+        >>> pipe.disable_style_aligned()
+        ```
+"""
+
+
+def expand_first(feat: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
+    b = feat.shape[0]
+    feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
+    if scale == 1:
+        feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
+    else:
+        feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
+        feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
+    return feat_style.reshape(*feat.shape)
+
+
+def concat_first(feat: torch.Tensor, dim: int = 2, scale: float = 1.0) -> torch.Tensor:
+    feat_style = expand_first(feat, scale=scale)
+    return torch.cat((feat, feat_style), dim=dim)
+
+
+def calc_mean_std(feat: torch.Tensor, eps: float = 1e-5) -> tuple[torch.Tensor, torch.Tensor]:
+    feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
+    feat_mean = feat.mean(dim=-2, keepdims=True)
+    return feat_mean, feat_std
+
+
+def adain(feat: torch.Tensor) -> torch.Tensor:
+    feat_mean, feat_std = calc_mean_std(feat)
+    feat_style_mean = expand_first(feat_mean)
+    feat_style_std = expand_first(feat_std)
+    feat = (feat - feat_mean) / feat_std
+    feat = feat * feat_style_std + feat_style_mean
+    return feat
+
+
+def get_switch_vec(total_num_layers, level):
+    if level == 0:
+        return torch.zeros(total_num_layers, dtype=torch.bool)
+    if level == 1:
+        return torch.ones(total_num_layers, dtype=torch.bool)
+    to_flip = level > 0.5
+    if to_flip:
+        level = 1 - level
+    num_switch = int(level * total_num_layers)
+    vec = torch.arange(total_num_layers)
+    vec = vec % (total_num_layers // num_switch)
+    vec = vec == 0
+    if to_flip:
+        vec = ~vec
+    return vec
+
+
+class SharedAttentionProcessor(AttnProcessor2_0):
+    def __init__(
+        self,
+        share_attention: bool = True,
+        adain_queries: bool = True,
+        adain_keys: bool = True,
+        adain_values: bool = False,
+        full_attention_share: bool = False,
+        shared_score_scale: float = 1.0,
+        shared_score_shift: float = 0.0,
+    ):
+        r"""Shared Attention Processor as proposed in the StyleAligned paper."""
+        super().__init__()
+        self.share_attention = share_attention
+        self.adain_queries = adain_queries
+        self.adain_keys = adain_keys
+        self.adain_values = adain_values
+        self.full_attention_share = full_attention_share
+        self.shared_score_scale = shared_score_scale
+        self.shared_score_shift = shared_score_shift
+
+    def shifted_scaled_dot_product_attention(
+        self, attn: Attention, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
+    ) -> torch.Tensor:
+        logits = torch.einsum("bhqd,bhkd->bhqk", query, key) * attn.scale
+        logits[:, :, :, query.shape[2] :] += self.shared_score_shift
+        probs = logits.softmax(-1)
+        return torch.einsum("bhqk,bhkd->bhqd", probs, value)
+
+    def shared_call(
+        self,
+        attn: Attention,
+        hidden_states: torch.Tensor,
+        encoder_hidden_states: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        **kwargs,
+    ):
+        residual = hidden_states
+        input_ndim = hidden_states.ndim
+        if input_ndim == 4:
+            batch_size, channel, height, width = hidden_states.shape
+            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
+        batch_size, sequence_length, _ = (
+            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
+        )
+
+        if attention_mask is not None:
+            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
+            # scaled_dot_product_attention expects attention_mask shape to be
+            # (batch, heads, source_length, target_length)
+            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
+
+        if attn.group_norm is not None:
+            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
+
+        query = attn.to_q(hidden_states)
+        key = attn.to_k(hidden_states)
+        value = attn.to_v(hidden_states)
+        inner_dim = key.shape[-1]
+        head_dim = inner_dim // attn.heads
+
+        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+
+        if self.adain_queries:
+            query = adain(query)
+        if self.adain_keys:
+            key = adain(key)
+        if self.adain_values:
+            value = adain(value)
+        if self.share_attention:
+            key = concat_first(key, -2, scale=self.shared_score_scale)
+            value = concat_first(value, -2)
+            if self.shared_score_shift != 0:
+                hidden_states = self.shifted_scaled_dot_product_attention(attn, query, key, value)
+            else:
+                hidden_states = F.scaled_dot_product_attention(
+                    query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
+                )
+        else:
+            hidden_states = F.scaled_dot_product_attention(
+                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
+            )
+
+        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
+        hidden_states = hidden_states.to(query.dtype)
+
+        # linear proj
+        hidden_states = attn.to_out[0](hidden_states)
+        # dropout
+        hidden_states = attn.to_out[1](hidden_states)
+
+        if input_ndim == 4:
+            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
+
+        if attn.residual_connection:
+            hidden_states = hidden_states + residual
+
+        hidden_states = hidden_states / attn.rescale_output_factor
+        return hidden_states
+
+    def __call__(
+        self,
+        attn: Attention,
+        hidden_states: torch.Tensor,
+        encoder_hidden_states: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        **kwargs,
+    ):
+        if self.full_attention_share:
+            b, n, d = hidden_states.shape
+            k = 2
+            hidden_states = hidden_states.view(k, b, n, d).permute(0, 1, 3, 2).contiguous().view(-1, n, d)
+            # hidden_states = einops.rearrange(hidden_states, "(k b) n d -> k (b n) d", k=2)
+            hidden_states = super().__call__(
+                attn,
+                hidden_states,
+                encoder_hidden_states=encoder_hidden_states,
+                attention_mask=attention_mask,
+                **kwargs,
+            )
+            hidden_states = hidden_states.view(k, b, n, d).permute(0, 1, 3, 2).contiguous().view(-1, n, d)
+            # hidden_states = einops.rearrange(hidden_states, "k (b n) d -> (k b) n d", n=n)
+        else:
+            hidden_states = self.shared_call(attn, hidden_states, hidden_states, attention_mask, **kwargs)
+
+        return hidden_states
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
+def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
+    """
+    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
+    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
+    """
+    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
+    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
+    # rescale the results from guidance (fixes overexposure)
+    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
+    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
+    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
+    return noise_cfg
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
+def retrieve_timesteps(
+    scheduler,
+    num_inference_steps: Optional[int] = None,
+    device: Optional[Union[str, torch.device]] = None,
+    timesteps: Optional[List[int]] = None,
+    **kwargs,
+):
+    """
+    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
+    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
+
+    Args:
+        scheduler (`SchedulerMixin`):
+            The scheduler to get timesteps from.
+        num_inference_steps (`int`):
+            The number of diffusion steps used when generating samples with a pre-trained model. If used,
+            `timesteps` must be `None`.
+        device (`str` or `torch.device`, *optional*):
+            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
+        timesteps (`List[int]`, *optional*):
+                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
+                timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
+                must be `None`.
+
+    Returns:
+        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
+        second element is the number of inference steps.
+    """
+    if timesteps is not None:
+        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
+        if not accepts_timesteps:
+            raise ValueError(
+                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
+                f" timestep schedules. Please check whether you are using the correct scheduler."
+            )
+        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
+        timesteps = scheduler.timesteps
+        num_inference_steps = len(timesteps)
+    else:
+        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
+        timesteps = scheduler.timesteps
+    return timesteps, num_inference_steps
+
+
+# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
+def retrieve_latents(
+    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
+):
+    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
+        return encoder_output.latent_dist.sample(generator)
+    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
+        return encoder_output.latent_dist.mode()
+    elif hasattr(encoder_output, "latents"):
+        return encoder_output.latents
+    else:
+        raise AttributeError("Could not access latents of provided encoder_output")
+
+
+class StyleAlignedSDXLPipeline(
+    DiffusionPipeline,
+    FromSingleFileMixin,
+    StableDiffusionXLLoraLoaderMixin,
+    TextualInversionLoaderMixin,
+    IPAdapterMixin,
+):
+    r"""
+    Pipeline for text-to-image generation using Stable Diffusion XL.
+
+    This pipeline also adds experimental support for [StyleAligned](https://arxiv.org/abs/2312.02133). It can
+    be enabled/disabled using `.enable_style_aligned()` or `.disable_style_aligned()` respectively.
+
+    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
+    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
+
+    The pipeline also inherits the following loading methods:
+        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
+        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
+        - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
+        - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
+        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
+
+    Args:
+        vae ([`AutoencoderKL`]):
+            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
+        text_encoder ([`CLIPTextModel`]):
+            Frozen text-encoder. Stable Diffusion XL uses the text portion of
+            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
+            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
+        text_encoder_2 ([` CLIPTextModelWithProjection`]):
+            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
+            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
+            specifically the
+            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
+            variant.
+        tokenizer (`CLIPTokenizer`):
+            Tokenizer of class
+            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+        tokenizer_2 (`CLIPTokenizer`):
+            Second Tokenizer of class
+            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
+        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
+        scheduler ([`SchedulerMixin`]):
+            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+        force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
+            Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
+            `stabilityai/stable-diffusion-xl-base-1-0`.
+        add_watermarker (`bool`, *optional*):
+            Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
+            watermark output images. If not defined, it will default to True if the package is installed, otherwise no
+            watermarker will be used.
+    """
+
+    model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
+    _optional_components = [
+        "tokenizer",
+        "tokenizer_2",
+        "text_encoder",
+        "text_encoder_2",
+        "image_encoder",
+        "feature_extractor",
+    ]
+    _callback_tensor_inputs = [
+        "latents",
+        "prompt_embeds",
+        "negative_prompt_embeds",
+        "add_text_embeds",
+        "add_time_ids",
+        "negative_pooled_prompt_embeds",
+        "negative_add_time_ids",
+    ]
+
+    def __init__(
+        self,
+        vae: AutoencoderKL,
+        text_encoder: CLIPTextModel,
+        text_encoder_2: CLIPTextModelWithProjection,
+        tokenizer: CLIPTokenizer,
+        tokenizer_2: CLIPTokenizer,
+        unet: UNet2DConditionModel,
+        scheduler: KarrasDiffusionSchedulers,
+        image_encoder: CLIPVisionModelWithProjection = None,
+        feature_extractor: CLIPImageProcessor = None,
+        force_zeros_for_empty_prompt: bool = True,
+        add_watermarker: Optional[bool] = None,
+    ):
+        super().__init__()
+
+        self.register_modules(
+            vae=vae,
+            text_encoder=text_encoder,
+            text_encoder_2=text_encoder_2,
+            tokenizer=tokenizer,
+            tokenizer_2=tokenizer_2,
+            unet=unet,
+            scheduler=scheduler,
+            image_encoder=image_encoder,
+            feature_extractor=feature_extractor,
+        )
+        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
+        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
+        self.mask_processor = VaeImageProcessor(
+            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
+        )
+
+        self.default_sample_size = self.unet.config.sample_size
+
+        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
+
+        if add_watermarker:
+            self.watermark = StableDiffusionXLWatermarker()
+        else:
+            self.watermark = None
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
+    def enable_vae_slicing(self):
+        r"""
+        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
+        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
+        """
+        self.vae.enable_slicing()
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
+    def disable_vae_slicing(self):
+        r"""
+        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
+        computing decoding in one step.
+        """
+        self.vae.disable_slicing()
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
+    def enable_vae_tiling(self):
+        r"""
+        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
+        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
+        processing larger images.
+        """
+        self.vae.enable_tiling()
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
+    def disable_vae_tiling(self):
+        r"""
+        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
+        computing decoding in one step.
+        """
+        self.vae.disable_tiling()
+
+    def encode_prompt(
+        self,
+        prompt: str,
+        prompt_2: Optional[str] = None,
+        device: Optional[torch.device] = None,
+        num_images_per_prompt: int = 1,
+        do_classifier_free_guidance: bool = True,
+        negative_prompt: Optional[str] = None,
+        negative_prompt_2: Optional[str] = None,
+        prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        lora_scale: Optional[float] = None,
+        clip_skip: Optional[int] = None,
+    ):
+        r"""
+        Encodes the prompt into text encoder hidden states.
+
+        Args:
+            prompt (`str` or `List[str]`, *optional*):
+                prompt to be encoded
+            prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+                used in both text-encoders
+            device: (`torch.device`):
+                torch device
+            num_images_per_prompt (`int`):
+                number of images that should be generated per prompt
+            do_classifier_free_guidance (`bool`):
+                whether to use classifier free guidance or not
+            negative_prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts not to guide the image generation. If not defined, one has to pass
+                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+                less than `1`).
+            negative_prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
+                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
+            prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+                provided, text embeddings will be generated from `prompt` input argument.
+            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+                argument.
+            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+                If not provided, pooled text embeddings will be generated from `prompt` input argument.
+            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
+                input argument.
+            lora_scale (`float`, *optional*):
+                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+            clip_skip (`int`, *optional*):
+                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+                the output of the pre-final layer will be used for computing the prompt embeddings.
+        """
+        device = device or self._execution_device
+
+        # set lora scale so that monkey patched LoRA
+        # function of text encoder can correctly access it
+        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
+            self._lora_scale = lora_scale
+
+            # dynamically adjust the LoRA scale
+            if self.text_encoder is not None:
+                if not USE_PEFT_BACKEND:
+                    adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
+                else:
+                    scale_lora_layers(self.text_encoder, lora_scale)
+
+            if self.text_encoder_2 is not None:
+                if not USE_PEFT_BACKEND:
+                    adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
+                else:
+                    scale_lora_layers(self.text_encoder_2, lora_scale)
+
+        prompt = [prompt] if isinstance(prompt, str) else prompt
+
+        if prompt is not None:
+            batch_size = len(prompt)
+        else:
+            batch_size = prompt_embeds.shape[0]
+
+        # Define tokenizers and text encoders
+        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
+        text_encoders = (
+            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
+        )
+
+        if prompt_embeds is None:
+            prompt_2 = prompt_2 or prompt
+            prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
+
+            # textual inversion: procecss multi-vector tokens if necessary
+            prompt_embeds_list = []
+            prompts = [prompt, prompt_2]
+            for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
+                if isinstance(self, TextualInversionLoaderMixin):
+                    prompt = self.maybe_convert_prompt(prompt, tokenizer)
+
+                text_inputs = tokenizer(
+                    prompt,
+                    padding="max_length",
+                    max_length=tokenizer.model_max_length,
+                    truncation=True,
+                    return_tensors="pt",
+                )
+
+                text_input_ids = text_inputs.input_ids
+                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+
+                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
+                    text_input_ids, untruncated_ids
+                ):
+                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
+                    logger.warning(
+                        "The following part of your input was truncated because CLIP can only handle sequences up to"
+                        f" {tokenizer.model_max_length} tokens: {removed_text}"
+                    )
+
+                prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
+
+                # We are only ALWAYS interested in the pooled output of the final text encoder
+                pooled_prompt_embeds = prompt_embeds[0]
+                if clip_skip is None:
+                    prompt_embeds = prompt_embeds.hidden_states[-2]
+                else:
+                    # "2" because SDXL always indexes from the penultimate layer.
+                    prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
+
+                prompt_embeds_list.append(prompt_embeds)
+
+            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
+
+        # get unconditional embeddings for classifier free guidance
+        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
+        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
+            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
+            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
+        elif do_classifier_free_guidance and negative_prompt_embeds is None:
+            negative_prompt = negative_prompt or ""
+            negative_prompt_2 = negative_prompt_2 or negative_prompt
+
+            # normalize str to list
+            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
+            negative_prompt_2 = (
+                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
+            )
+
+            uncond_tokens: List[str]
+            if prompt is not None and type(prompt) is not type(negative_prompt):
+                raise TypeError(
+                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+                    f" {type(prompt)}."
+                )
+            elif batch_size != len(negative_prompt):
+                raise ValueError(
+                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+                    " the batch size of `prompt`."
+                )
+            else:
+                uncond_tokens = [negative_prompt, negative_prompt_2]
+
+            negative_prompt_embeds_list = []
+            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
+                if isinstance(self, TextualInversionLoaderMixin):
+                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
+
+                max_length = prompt_embeds.shape[1]
+                uncond_input = tokenizer(
+                    negative_prompt,
+                    padding="max_length",
+                    max_length=max_length,
+                    truncation=True,
+                    return_tensors="pt",
+                )
+
+                negative_prompt_embeds = text_encoder(
+                    uncond_input.input_ids.to(device),
+                    output_hidden_states=True,
+                )
+                # We are only ALWAYS interested in the pooled output of the final text encoder
+                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
+                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
+
+                negative_prompt_embeds_list.append(negative_prompt_embeds)
+
+            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
+
+        if self.text_encoder_2 is not None:
+            prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
+        else:
+            prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
+
+        bs_embed, seq_len, _ = prompt_embeds.shape
+        # duplicate text embeddings for each generation per prompt, using mps friendly method
+        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+        if do_classifier_free_guidance:
+            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+            seq_len = negative_prompt_embeds.shape[1]
+
+            if self.text_encoder_2 is not None:
+                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
+            else:
+                negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
+
+            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
+            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
+            bs_embed * num_images_per_prompt, -1
+        )
+        if do_classifier_free_guidance:
+            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
+                bs_embed * num_images_per_prompt, -1
+            )
+
+        if self.text_encoder is not None:
+            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
+                # Retrieve the original scale by scaling back the LoRA layers
+                unscale_lora_layers(self.text_encoder, lora_scale)
+
+        if self.text_encoder_2 is not None:
+            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
+                # Retrieve the original scale by scaling back the LoRA layers
+                unscale_lora_layers(self.text_encoder_2, lora_scale)
+
+        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
+    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
+        dtype = next(self.image_encoder.parameters()).dtype
+
+        if not isinstance(image, torch.Tensor):
+            image = self.feature_extractor(image, return_tensors="pt").pixel_values
+
+        image = image.to(device=device, dtype=dtype)
+        if output_hidden_states:
+            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
+            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
+            uncond_image_enc_hidden_states = self.image_encoder(
+                torch.zeros_like(image), output_hidden_states=True
+            ).hidden_states[-2]
+            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
+                num_images_per_prompt, dim=0
+            )
+            return image_enc_hidden_states, uncond_image_enc_hidden_states
+        else:
+            image_embeds = self.image_encoder(image).image_embeds
+            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
+            uncond_image_embeds = torch.zeros_like(image_embeds)
+
+            return image_embeds, uncond_image_embeds
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+    def prepare_extra_step_kwargs(self, generator, eta):
+        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+        # and should be between [0, 1]
+
+        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+        extra_step_kwargs = {}
+        if accepts_eta:
+            extra_step_kwargs["eta"] = eta
+
+        # check if the scheduler accepts generator
+        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+        if accepts_generator:
+            extra_step_kwargs["generator"] = generator
+        return extra_step_kwargs
+
+    def check_inputs(
+        self,
+        prompt,
+        prompt_2,
+        height,
+        width,
+        callback_steps,
+        negative_prompt=None,
+        negative_prompt_2=None,
+        prompt_embeds=None,
+        negative_prompt_embeds=None,
+        pooled_prompt_embeds=None,
+        negative_pooled_prompt_embeds=None,
+        callback_on_step_end_tensor_inputs=None,
+    ):
+        if height % 8 != 0 or width % 8 != 0:
+            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
+
+        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
+            raise ValueError(
+                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+                f" {type(callback_steps)}."
+            )
+
+        if callback_on_step_end_tensor_inputs is not None and not all(
+            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
+        ):
+            raise ValueError(
+                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
+            )
+
+        if prompt is not None and prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+                " only forward one of the two."
+            )
+        elif prompt_2 is not None and prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+                " only forward one of the two."
+            )
+        elif prompt is None and prompt_embeds is None:
+            raise ValueError(
+                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
+            )
+        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+        elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
+            raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
+
+        if negative_prompt is not None and negative_prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
+                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+            )
+        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
+                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+            )
+
+        if prompt_embeds is not None and negative_prompt_embeds is not None:
+            if prompt_embeds.shape != negative_prompt_embeds.shape:
+                raise ValueError(
+                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
+                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
+                    f" {negative_prompt_embeds.shape}."
+                )
+
+        if prompt_embeds is not None and pooled_prompt_embeds is None:
+            raise ValueError(
+                "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
+            )
+
+        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
+            raise ValueError(
+                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
+            )
+
+    def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
+        # get the original timestep using init_timestep
+        if denoising_start is None:
+            init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+            t_start = max(num_inference_steps - init_timestep, 0)
+        else:
+            t_start = 0
+
+        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
+
+        # Strength is irrelevant if we directly request a timestep to start at;
+        # that is, strength is determined by the denoising_start instead.
+        if denoising_start is not None:
+            discrete_timestep_cutoff = int(
+                round(
+                    self.scheduler.config.num_train_timesteps
+                    - (denoising_start * self.scheduler.config.num_train_timesteps)
+                )
+            )
+
+            num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
+            if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
+                # if the scheduler is a 2nd order scheduler we might have to do +1
+                # because `num_inference_steps` might be even given that every timestep
+                # (except the highest one) is duplicated. If `num_inference_steps` is even it would
+                # mean that we cut the timesteps in the middle of the denoising step
+                # (between 1st and 2nd devirative) which leads to incorrect results. By adding 1
+                # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
+                num_inference_steps = num_inference_steps + 1
+
+            # because t_n+1 >= t_n, we slice the timesteps starting from the end
+            timesteps = timesteps[-num_inference_steps:]
+            return timesteps, num_inference_steps
+
+        return timesteps, num_inference_steps - t_start
+
+    def prepare_latents(
+        self,
+        image,
+        mask,
+        width,
+        height,
+        num_channels_latents,
+        timestep,
+        batch_size,
+        num_images_per_prompt,
+        dtype,
+        device,
+        generator=None,
+        add_noise=True,
+        latents=None,
+        is_strength_max=True,
+        return_noise=False,
+        return_image_latents=False,
+    ):
+        batch_size *= num_images_per_prompt
+
+        if image is None:
+            shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
+            if isinstance(generator, list) and len(generator) != batch_size:
+                raise ValueError(
+                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+                )
+
+            if latents is None:
+                latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+            else:
+                latents = latents.to(device)
+
+            # scale the initial noise by the standard deviation required by the scheduler
+            latents = latents * self.scheduler.init_noise_sigma
+            return latents
+
+        elif mask is None:
+            if not isinstance(image, (torch.Tensor, Image.Image, list)):
+                raise ValueError(
+                    f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
+                )
+
+            # Offload text encoder if `enable_model_cpu_offload` was enabled
+            if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
+                self.text_encoder_2.to("cpu")
+                torch.cuda.empty_cache()
+
+            image = image.to(device=device, dtype=dtype)
+
+            if image.shape[1] == 4:
+                init_latents = image
+
+            else:
+                # make sure the VAE is in float32 mode, as it overflows in float16
+                if self.vae.config.force_upcast:
+                    image = image.float()
+                    self.vae.to(dtype=torch.float32)
+
+                if isinstance(generator, list) and len(generator) != batch_size:
+                    raise ValueError(
+                        f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+                        f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+                    )
+
+                elif isinstance(generator, list):
+                    init_latents = [
+                        retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
+                        for i in range(batch_size)
+                    ]
+                    init_latents = torch.cat(init_latents, dim=0)
+                else:
+                    init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
+
+                if self.vae.config.force_upcast:
+                    self.vae.to(dtype)
+
+                init_latents = init_latents.to(dtype)
+                init_latents = self.vae.config.scaling_factor * init_latents
+
+            if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
+                # expand init_latents for batch_size
+                additional_image_per_prompt = batch_size // init_latents.shape[0]
+                init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
+            elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
+                raise ValueError(
+                    f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
+                )
+            else:
+                init_latents = torch.cat([init_latents], dim=0)
+
+            if add_noise:
+                shape = init_latents.shape
+                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+                # get latents
+                init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+
+            latents = init_latents
+            return latents
+
+        else:
+            shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
+            if isinstance(generator, list) and len(generator) != batch_size:
+                raise ValueError(
+                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+                )
+
+            if (image is None or timestep is None) and not is_strength_max:
+                raise ValueError(
+                    "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
+                    "However, either the image or the noise timestep has not been provided."
+                )
+
+            if image.shape[1] == 4:
+                image_latents = image.to(device=device, dtype=dtype)
+                image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
+            elif return_image_latents or (latents is None and not is_strength_max):
+                image = image.to(device=device, dtype=dtype)
+                image_latents = self._encode_vae_image(image=image, generator=generator)
+                image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
+
+            if latents is None and add_noise:
+                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+                # if strength is 1. then initialise the latents to noise, else initial to image + noise
+                latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
+                # if pure noise then scale the initial latents by the  Scheduler's init sigma
+                latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
+            elif add_noise:
+                noise = latents.to(device)
+                latents = noise * self.scheduler.init_noise_sigma
+            else:
+                noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+                latents = image_latents.to(device)
+
+            outputs = (latents,)
+
+            if return_noise:
+                outputs += (noise,)
+
+            if return_image_latents:
+                outputs += (image_latents,)
+
+            return outputs
+
+    def prepare_mask_latents(
+        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
+    ):
+        # resize the mask to latents shape as we concatenate the mask to the latents
+        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
+        # and half precision
+        mask = torch.nn.functional.interpolate(
+            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
+        )
+        mask = mask.to(device=device, dtype=dtype)
+
+        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
+        if mask.shape[0] < batch_size:
+            if not batch_size % mask.shape[0] == 0:
+                raise ValueError(
+                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
+                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
+                    " of masks that you pass is divisible by the total requested batch size."
+                )
+            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
+
+        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
+
+        if masked_image is not None and masked_image.shape[1] == 4:
+            masked_image_latents = masked_image
+        else:
+            masked_image_latents = None
+
+        if masked_image is not None:
+            if masked_image_latents is None:
+                masked_image = masked_image.to(device=device, dtype=dtype)
+                masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
+
+            if masked_image_latents.shape[0] < batch_size:
+                if not batch_size % masked_image_latents.shape[0] == 0:
+                    raise ValueError(
+                        "The passed images and the required batch size don't match. Images are supposed to be duplicated"
+                        f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
+                        " Make sure the number of images that you pass is divisible by the total requested batch size."
+                    )
+                masked_image_latents = masked_image_latents.repeat(
+                    batch_size // masked_image_latents.shape[0], 1, 1, 1
+                )
+
+            masked_image_latents = (
+                torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
+            )
+
+            # aligning device to prevent device errors when concating it with the latent model input
+            masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
+
+        return mask, masked_image_latents
+
+    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
+        dtype = image.dtype
+        if self.vae.config.force_upcast:
+            image = image.float()
+            self.vae.to(dtype=torch.float32)
+
+        if isinstance(generator, list):
+            image_latents = [
+                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
+                for i in range(image.shape[0])
+            ]
+            image_latents = torch.cat(image_latents, dim=0)
+        else:
+            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
+
+        if self.vae.config.force_upcast:
+            self.vae.to(dtype)
+
+        image_latents = image_latents.to(dtype)
+        image_latents = self.vae.config.scaling_factor * image_latents
+
+        return image_latents
+
+    def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
+        add_time_ids = list(original_size + crops_coords_top_left + target_size)
+
+        passed_add_embed_dim = (
+            self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
+        )
+        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
+
+        if expected_add_embed_dim != passed_add_embed_dim:
+            raise ValueError(
+                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
+            )
+
+        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
+        return add_time_ids
+
+    def upcast_vae(self):
+        dtype = self.vae.dtype
+        self.vae.to(dtype=torch.float32)
+        use_torch_2_0_or_xformers = isinstance(
+            self.vae.decoder.mid_block.attentions[0].processor,
+            (
+                AttnProcessor2_0,
+                XFormersAttnProcessor,
+                LoRAXFormersAttnProcessor,
+                LoRAAttnProcessor2_0,
+                FusedAttnProcessor2_0,
+            ),
+        )
+        # if xformers or torch_2_0 is used attention block does not need
+        # to be in float32 which can save lots of memory
+        if use_torch_2_0_or_xformers:
+            self.vae.post_quant_conv.to(dtype)
+            self.vae.decoder.conv_in.to(dtype)
+            self.vae.decoder.mid_block.to(dtype)
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
+    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
+        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
+
+        The suffixes after the scaling factors represent the stages where they are being applied.
+
+        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
+        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
+
+        Args:
+            s1 (`float`):
+                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
+                mitigate "oversmoothing effect" in the enhanced denoising process.
+            s2 (`float`):
+                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
+                mitigate "oversmoothing effect" in the enhanced denoising process.
+            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
+            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
+        """
+        if not hasattr(self, "unet"):
+            raise ValueError("The pipeline must have `unet` for using FreeU.")
+        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
+    def disable_freeu(self):
+        """Disables the FreeU mechanism if enabled."""
+        self.unet.disable_freeu()
+
+    def _enable_shared_attention_processors(
+        self,
+        share_attention: bool,
+        adain_queries: bool,
+        adain_keys: bool,
+        adain_values: bool,
+        full_attention_share: bool,
+        shared_score_scale: float,
+        shared_score_shift: float,
+        only_self_level: float,
+    ):
+        r"""Helper method to enable usage of Shared Attention Processor."""
+        attn_procs = {}
+        num_self_layers = len([name for name in self.unet.attn_processors.keys() if "attn1" in name])
+
+        only_self_vec = get_switch_vec(num_self_layers, only_self_level)
+
+        for i, name in enumerate(self.unet.attn_processors.keys()):
+            is_self_attention = "attn1" in name
+            if is_self_attention:
+                if only_self_vec[i // 2]:
+                    attn_procs[name] = AttnProcessor2_0()
+                else:
+                    attn_procs[name] = SharedAttentionProcessor(
+                        share_attention=share_attention,
+                        adain_queries=adain_queries,
+                        adain_keys=adain_keys,
+                        adain_values=adain_values,
+                        full_attention_share=full_attention_share,
+                        shared_score_scale=shared_score_scale,
+                        shared_score_shift=shared_score_shift,
+                    )
+            else:
+                attn_procs[name] = AttnProcessor2_0()
+
+        self.unet.set_attn_processor(attn_procs)
+
+    def _disable_shared_attention_processors(self):
+        r"""
+        Helper method to disable usage of the Shared Attention Processor. All processors
+        are reset to the default Attention Processor for pytorch versions above 2.0.
+        """
+        attn_procs = {}
+
+        for i, name in enumerate(self.unet.attn_processors.keys()):
+            attn_procs[name] = AttnProcessor2_0()
+
+        self.unet.set_attn_processor(attn_procs)
+
+    def _register_shared_norm(self, share_group_norm: bool = True, share_layer_norm: bool = True):
+        r"""Helper method to register shared group/layer normalization layers."""
+
+        def register_norm_forward(norm_layer: Union[nn.GroupNorm, nn.LayerNorm]) -> Union[nn.GroupNorm, nn.LayerNorm]:
+            if not hasattr(norm_layer, "orig_forward"):
+                setattr(norm_layer, "orig_forward", norm_layer.forward)
+            orig_forward = norm_layer.orig_forward
+
+            def forward_(hidden_states: torch.Tensor) -> torch.Tensor:
+                n = hidden_states.shape[-2]
+                hidden_states = concat_first(hidden_states, dim=-2)
+                hidden_states = orig_forward(hidden_states)
+                return hidden_states[..., :n, :]
+
+            norm_layer.forward = forward_
+            return norm_layer
+
+        def get_norm_layers(pipeline_, norm_layers_: Dict[str, List[Union[nn.GroupNorm, nn.LayerNorm]]]):
+            if isinstance(pipeline_, nn.LayerNorm) and share_layer_norm:
+                norm_layers_["layer"].append(pipeline_)
+            if isinstance(pipeline_, nn.GroupNorm) and share_group_norm:
+                norm_layers_["group"].append(pipeline_)
+            else:
+                for layer in pipeline_.children():
+                    get_norm_layers(layer, norm_layers_)
+
+        norm_layers = {"group": [], "layer": []}
+        get_norm_layers(self.unet, norm_layers)
+
+        norm_layers_list = []
+        for key in ["group", "layer"]:
+            for layer in norm_layers[key]:
+                norm_layers_list.append(register_norm_forward(layer))
+
+        return norm_layers_list
+
+    @property
+    def style_aligned_enabled(self):
+        r"""Returns whether StyleAligned has been enabled in the pipeline or not."""
+        return hasattr(self, "_style_aligned_norm_layers") and self._style_aligned_norm_layers is not None
+
+    def enable_style_aligned(
+        self,
+        share_group_norm: bool = True,
+        share_layer_norm: bool = True,
+        share_attention: bool = True,
+        adain_queries: bool = True,
+        adain_keys: bool = True,
+        adain_values: bool = False,
+        full_attention_share: bool = False,
+        shared_score_scale: float = 1.0,
+        shared_score_shift: float = 0.0,
+        only_self_level: float = 0.0,
+    ):
+        r"""
+        Enables the StyleAligned mechanism as in https://arxiv.org/abs/2312.02133.
+
+        Args:
+            share_group_norm (`bool`, defaults to `True`):
+                Whether or not to use shared group normalization layers.
+            share_layer_norm (`bool`, defaults to `True`):
+                Whether or not to use shared layer normalization layers.
+            share_attention (`bool`, defaults to `True`):
+                Whether or not to use attention sharing between batch images.
+            adain_queries (`bool`, defaults to `True`):
+                Whether or not to apply the AdaIn operation on attention queries.
+            adain_keys (`bool`, defaults to `True`):
+                Whether or not to apply the AdaIn operation on attention keys.
+            adain_values (`bool`, defaults to `False`):
+                Whether or not to apply the AdaIn operation on attention values.
+            full_attention_share (`bool`, defaults to `False`):
+                Whether or not to use full attention sharing between all images in a batch. Can
+                lead to content leakage within each batch and some loss in diversity.
+            shared_score_scale (`float`, defaults to `1.0`):
+                Scale for shared attention.
+        """
+        self._style_aligned_norm_layers = self._register_shared_norm(share_group_norm, share_layer_norm)
+        self._enable_shared_attention_processors(
+            share_attention=share_attention,
+            adain_queries=adain_queries,
+            adain_keys=adain_keys,
+            adain_values=adain_values,
+            full_attention_share=full_attention_share,
+            shared_score_scale=shared_score_scale,
+            shared_score_shift=shared_score_shift,
+            only_self_level=only_self_level,
+        )
+
+    def disable_style_aligned(self):
+        r"""Disables the StyleAligned mechanism if it had been previously enabled."""
+        if self.style_aligned_enabled:
+            for layer in self._style_aligned_norm_layers:
+                layer.forward = layer.orig_forward
+
+            self._style_aligned_norm_layers = None
+            self._disable_shared_attention_processors()
+
+    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
+        """
+        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
+        key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
+
+        <Tip warning={true}>
+
+        This API is 🧪 experimental.
+
+        </Tip>
+
+        Args:
+            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
+            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
+        """
+        self.fusing_unet = False
+        self.fusing_vae = False
+
+        if unet:
+            self.fusing_unet = True
+            self.unet.fuse_qkv_projections()
+            self.unet.set_attn_processor(FusedAttnProcessor2_0())
+
+        if vae:
+            if not isinstance(self.vae, AutoencoderKL):
+                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
+
+            self.fusing_vae = True
+            self.vae.fuse_qkv_projections()
+            self.vae.set_attn_processor(FusedAttnProcessor2_0())
+
+    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
+        """Disable QKV projection fusion if enabled.
+
+        <Tip warning={true}>
+
+        This API is 🧪 experimental.
+
+        </Tip>
+
+        Args:
+            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
+            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
+
+        """
+        if unet:
+            if not self.fusing_unet:
+                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
+            else:
+                self.unet.unfuse_qkv_projections()
+                self.fusing_unet = False
+
+        if vae:
+            if not self.fusing_vae:
+                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
+            else:
+                self.vae.unfuse_qkv_projections()
+                self.fusing_vae = False
+
+    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
+    def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
+        """
+        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
+
+        Args:
+            timesteps (`torch.Tensor`):
+                generate embedding vectors at these timesteps
+            embedding_dim (`int`, *optional*, defaults to 512):
+                dimension of the embeddings to generate
+            dtype:
+                data type of the generated embeddings
+
+        Returns:
+            `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
+        """
+        assert len(w.shape) == 1
+        w = w * 1000.0
+
+        half_dim = embedding_dim // 2
+        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
+        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
+        emb = w.to(dtype)[:, None] * emb[None, :]
+        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+        if embedding_dim % 2 == 1:  # zero pad
+            emb = torch.nn.functional.pad(emb, (0, 1))
+        assert emb.shape == (w.shape[0], embedding_dim)
+        return emb
+
+    @property
+    def guidance_scale(self):
+        return self._guidance_scale
+
+    @property
+    def guidance_rescale(self):
+        return self._guidance_rescale
+
+    @property
+    def clip_skip(self):
+        return self._clip_skip
+
+    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+    # corresponds to doing no classifier free guidance.
+    @property
+    def do_classifier_free_guidance(self):
+        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
+
+    @property
+    def cross_attention_kwargs(self):
+        return self._cross_attention_kwargs
+
+    @property
+    def denoising_end(self):
+        return self._denoising_end
+
+    @property
+    def denoising_start(self):
+        return self._denoising_start
+
+    @property
+    def num_timesteps(self):
+        return self._num_timesteps
+
+    @property
+    def interrupt(self):
+        return self._interrupt
+
+    @torch.no_grad()
+    @replace_example_docstring(EXAMPLE_DOC_STRING)
+    def __call__(
+        self,
+        prompt: Union[str, List[str]] = None,
+        prompt_2: Optional[Union[str, List[str]]] = None,
+        image: Optional[PipelineImageInput] = None,
+        mask_image: Optional[PipelineImageInput] = None,
+        masked_image_latents: Optional[torch.FloatTensor] = None,
+        strength: float = 0.3,
+        height: Optional[int] = None,
+        width: Optional[int] = None,
+        num_inference_steps: int = 50,
+        timesteps: List[int] = None,
+        denoising_start: Optional[float] = None,
+        denoising_end: Optional[float] = None,
+        guidance_scale: float = 5.0,
+        negative_prompt: Optional[Union[str, List[str]]] = None,
+        negative_prompt_2: Optional[Union[str, List[str]]] = None,
+        num_images_per_prompt: Optional[int] = 1,
+        eta: float = 0.0,
+        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+        latents: Optional[torch.FloatTensor] = None,
+        prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
+        ip_adapter_image: Optional[PipelineImageInput] = None,
+        output_type: Optional[str] = "pil",
+        return_dict: bool = True,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        guidance_rescale: float = 0.0,
+        original_size: Optional[Tuple[int, int]] = None,
+        crops_coords_top_left: Tuple[int, int] = (0, 0),
+        target_size: Optional[Tuple[int, int]] = None,
+        clip_skip: Optional[int] = None,
+        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
+        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+        **kwargs,
+    ):
+        r"""
+        Function invoked when calling the pipeline for generation.
+
+        Args:
+            prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
+                instead.
+            prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
+                used in both text-encoders
+            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+                The height in pixels of the generated image. This is set to 1024 by default for the best results.
+                Anything below 512 pixels won't work well for
+                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
+                and checkpoints that are not specifically fine-tuned on low resolutions.
+            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
+                The width in pixels of the generated image. This is set to 1024 by default for the best results.
+                Anything below 512 pixels won't work well for
+                [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
+                and checkpoints that are not specifically fine-tuned on low resolutions.
+            num_inference_steps (`int`, *optional*, defaults to 50):
+                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+                expense of slower inference.
+            timesteps (`List[int]`, *optional*):
+                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
+                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
+                passed will be used. Must be in descending order.
+            denoising_end (`float`, *optional*):
+                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
+                completed before it is intentionally prematurely terminated. As a result, the returned sample will
+                still retain a substantial amount of noise as determined by the discrete timesteps selected by the
+                scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
+                "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
+                Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
+            guidance_scale (`float`, *optional*, defaults to 5.0):
+                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
+                `guidance_scale` is defined as `w` of equation 2. of [Imagen
+                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
+                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
+                usually at the expense of lower image quality.
+            negative_prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts not to guide the image generation. If not defined, one has to pass
+                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+                less than `1`).
+            negative_prompt_2 (`str` or `List[str]`, *optional*):
+                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
+                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
+            num_images_per_prompt (`int`, *optional*, defaults to 1):
+                The number of images to generate per prompt.
+            eta (`float`, *optional*, defaults to 0.0):
+                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
+                [`schedulers.DDIMScheduler`], will be ignored for others.
+            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
+                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
+                to make generation deterministic.
+            latents (`torch.FloatTensor`, *optional*):
+                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
+                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+                tensor will ge generated by sampling using the supplied random `generator`.
+            prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+                provided, text embeddings will be generated from `prompt` input argument.
+            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+                argument.
+            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
+                If not provided, pooled text embeddings will be generated from `prompt` input argument.
+            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
+                input argument.
+            ip_adapter_image: (`PipelineImageInput`, *optional*):
+                Optional image input to work with IP Adapters.
+            output_type (`str`, *optional*, defaults to `"pil"`):
+                The output format of the generate image. Choose between
+                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
+            return_dict (`bool`, *optional*, defaults to `True`):
+                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
+                of a plain tuple.
+            cross_attention_kwargs (`dict`, *optional*):
+                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
+                `self.processor` in
+                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+            guidance_rescale (`float`, *optional*, defaults to 0.0):
+                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
+                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
+                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
+                Guidance rescale factor should fix overexposure when using zero terminal SNR.
+            original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
+                `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
+                explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
+                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
+                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
+                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                For most cases, `target_size` should be set to the desired height and width of the generated image. If
+                not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
+                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
+            negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                To negatively condition the generation process based on a specific image resolution. Part of SDXL's
+                micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+            negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
+                To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
+                micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+            negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
+                To negatively condition the generation process based on a target image resolution. It should be as same
+                as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
+                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
+                information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
+            callback_on_step_end (`Callable`, *optional*):
+                A function that calls at the end of each denoising steps during the inference. The function is called
+                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
+                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
+                `callback_on_step_end_tensor_inputs`.
+            callback_on_step_end_tensor_inputs (`List`, *optional*):
+                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
+                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
+                `._callback_tensor_inputs` attribute of your pipeline class.
+
+        Examples:
+
+        Returns:
+            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
+            [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
+            `tuple`. When returning a tuple, the first element is a list with the generated images.
+        """
+
+        callback = kwargs.pop("callback", None)
+        callback_steps = kwargs.pop("callback_steps", None)
+
+        if callback is not None:
+            deprecate(
+                "callback",
+                "1.0.0",
+                "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
+            )
+        if callback_steps is not None:
+            deprecate(
+                "callback_steps",
+                "1.0.0",
+                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
+            )
+
+        # 0. Default height and width to unet
+        height = height or self.default_sample_size * self.vae_scale_factor
+        width = width or self.default_sample_size * self.vae_scale_factor
+
+        original_size = original_size or (height, width)
+        target_size = target_size or (height, width)
+
+        # 1. Check inputs. Raise error if not correct
+        self.check_inputs(
+            prompt=prompt,
+            prompt_2=prompt_2,
+            height=height,
+            width=width,
+            callback_steps=callback_steps,
+            negative_prompt=negative_prompt,
+            negative_prompt_2=negative_prompt_2,
+            prompt_embeds=prompt_embeds,
+            negative_prompt_embeds=negative_prompt_embeds,
+            pooled_prompt_embeds=pooled_prompt_embeds,
+            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
+            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
+        )
+
+        self._guidance_scale = guidance_scale
+        self._guidance_rescale = guidance_rescale
+        self._clip_skip = clip_skip
+        self._cross_attention_kwargs = cross_attention_kwargs
+        self._denoising_end = denoising_end
+        self._denoising_start = denoising_start
+        self._interrupt = False
+
+        # 2. Define call parameters
+        if prompt is not None and isinstance(prompt, str):
+            batch_size = 1
+        elif prompt is not None and isinstance(prompt, list):
+            batch_size = len(prompt)
+        else:
+            batch_size = prompt_embeds.shape[0]
+
+        device = self._execution_device
+
+        # 3. Encode input prompt
+        lora_scale = (
+            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
+        )
+
+        (
+            prompt_embeds,
+            negative_prompt_embeds,
+            pooled_prompt_embeds,
+            negative_pooled_prompt_embeds,
+        ) = self.encode_prompt(
+            prompt=prompt,
+            prompt_2=prompt_2,
+            device=device,
+            num_images_per_prompt=num_images_per_prompt,
+            do_classifier_free_guidance=self.do_classifier_free_guidance,
+            negative_prompt=negative_prompt,
+            negative_prompt_2=negative_prompt_2,
+            prompt_embeds=prompt_embeds,
+            negative_prompt_embeds=negative_prompt_embeds,
+            pooled_prompt_embeds=pooled_prompt_embeds,
+            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
+            lora_scale=lora_scale,
+            clip_skip=self.clip_skip,
+        )
+
+        # 4. Preprocess image and mask_image
+        if image is not None:
+            image = self.image_processor.preprocess(image, height=height, width=width)
+            image = image.to(device=self.device, dtype=prompt_embeds.dtype)
+
+        if mask_image is not None:
+            mask = self.mask_processor.preprocess(mask_image, height=height, width=width)
+            mask = mask.to(device=self.device, dtype=prompt_embeds.dtype)
+
+            if masked_image_latents is not None:
+                masked_image = masked_image_latents
+            elif image.shape[1] == 4:
+                # if image is in latent space, we can't mask it
+                masked_image = None
+            else:
+                masked_image = image * (mask < 0.5)
+        else:
+            mask = None
+
+        # 4. Prepare timesteps
+        def denoising_value_valid(dnv):
+            return isinstance(self.denoising_end, float) and 0 < dnv < 1
+
+        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
+
+        if image is not None:
+            timesteps, num_inference_steps = self.get_timesteps(
+                num_inference_steps,
+                strength,
+                device,
+                denoising_start=self.denoising_start if denoising_value_valid else None,
+            )
+
+            # check that number of inference steps is not < 1 - as this doesn't make sense
+            if num_inference_steps < 1:
+                raise ValueError(
+                    f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
+                    f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
+                )
+
+        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
+        is_strength_max = strength == 1.0
+        add_noise = True if self.denoising_start is None else False
+
+        # 5. Prepare latent variables
+        num_channels_latents = self.unet.config.in_channels
+        num_channels_unet = self.unet.config.in_channels
+        return_image_latents = num_channels_unet == 4
+
+        latents = self.prepare_latents(
+            image=image,
+            mask=mask,
+            width=width,
+            height=height,
+            num_channels_latents=num_channels_latents,
+            timestep=latent_timestep,
+            batch_size=batch_size * num_images_per_prompt,
+            num_images_per_prompt=num_images_per_prompt,
+            dtype=prompt_embeds.dtype,
+            device=device,
+            generator=generator,
+            add_noise=add_noise,
+            latents=latents,
+            is_strength_max=is_strength_max,
+            return_noise=True,
+            return_image_latents=return_image_latents,
+        )
+
+        if mask is not None:
+            if return_image_latents:
+                latents, noise, image_latents = latents
+            else:
+                latents, noise = latents
+
+            mask, masked_image_latents = self.prepare_mask_latents(
+                mask=mask,
+                masked_image=masked_image,
+                batch_size=batch_size * num_images_per_prompt,
+                height=height,
+                width=width,
+                dtype=prompt_embeds.dtype,
+                device=device,
+                generator=generator,
+                do_classifier_free_guidance=self.do_classifier_free_guidance,
+            )
+
+            # Check that sizes of mask, masked image and latents match
+            if num_channels_unet == 9:
+                # default case for runwayml/stable-diffusion-inpainting
+                num_channels_mask = mask.shape[1]
+                num_channels_masked_image = masked_image_latents.shape[1]
+                if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:
+                    raise ValueError(
+                        f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
+                        f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
+                        f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
+                        f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
+                        " `pipeline.unet` or your `mask_image` or `image` input."
+                    )
+            elif num_channels_unet != 4:
+                raise ValueError(
+                    f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
+                )
+
+        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+        height, width = latents.shape[-2:]
+        height = height * self.vae_scale_factor
+        width = width * self.vae_scale_factor
+
+        original_size = original_size or (height, width)
+        target_size = target_size or (height, width)
+
+        # 7. Prepare added time ids & embeddings
+        add_text_embeds = pooled_prompt_embeds
+        add_time_ids = self._get_add_time_ids(
+            original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
+        )
+
+        if self.do_classifier_free_guidance:
+            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
+            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
+            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
+
+        prompt_embeds = prompt_embeds.to(device)
+        add_text_embeds = add_text_embeds.to(device)
+        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
+
+        if ip_adapter_image is not None:
+            output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
+            image_embeds, negative_image_embeds = self.encode_image(
+                ip_adapter_image, device, num_images_per_prompt, output_hidden_state
+            )
+            if self.do_classifier_free_guidance:
+                image_embeds = torch.cat([negative_image_embeds, image_embeds])
+                image_embeds = image_embeds.to(device)
+
+        # 8. Denoising loop
+        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
+
+        # 8.1 Apply denoising_end
+        if (
+            self.denoising_end is not None
+            and isinstance(self.denoising_end, float)
+            and self.denoising_end > 0
+            and self.denoising_end < 1
+        ):
+            discrete_timestep_cutoff = int(
+                round(
+                    self.scheduler.config.num_train_timesteps
+                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
+                )
+            )
+            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
+            timesteps = timesteps[:num_inference_steps]
+
+        # 9. Optionally get Guidance Scale Embedding
+        timestep_cond = None
+        if self.unet.config.time_cond_proj_dim is not None:
+            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
+            timestep_cond = self.get_guidance_scale_embedding(
+                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
+            ).to(device=device, dtype=latents.dtype)
+
+        self._num_timesteps = len(timesteps)
+
+        with self.progress_bar(total=num_inference_steps) as progress_bar:
+            for i, t in enumerate(timesteps):
+                if self.interrupt:
+                    continue
+
+                # expand the latents if we are doing classifier free guidance
+                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
+
+                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+                # predict the noise residual
+                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
+                if ip_adapter_image is not None:
+                    added_cond_kwargs["image_embeds"] = image_embeds
+
+                noise_pred = self.unet(
+                    latent_model_input,
+                    t,
+                    encoder_hidden_states=prompt_embeds,
+                    timestep_cond=timestep_cond,
+                    cross_attention_kwargs=self.cross_attention_kwargs,
+                    added_cond_kwargs=added_cond_kwargs,
+                    return_dict=False,
+                )[0]
+
+                # perform guidance
+                if self.do_classifier_free_guidance:
+                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
+                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
+                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
+
+                # compute the previous noisy sample x_t -> x_t-1
+                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
+
+                if mask is not None and num_channels_unet == 4:
+                    init_latents_proper = image_latents
+
+                    if self.do_classifier_free_guidance:
+                        init_mask, _ = mask.chunk(2)
+                    else:
+                        init_mask = mask
+
+                    if i < len(timesteps) - 1:
+                        noise_timestep = timesteps[i + 1]
+                        init_latents_proper = self.scheduler.add_noise(
+                            init_latents_proper, noise, torch.tensor([noise_timestep])
+                        )
+
+                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents
+
+                if callback_on_step_end is not None:
+                    callback_kwargs = {}
+                    for k in callback_on_step_end_tensor_inputs:
+                        callback_kwargs[k] = locals()[k]
+                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
+
+                    latents = callback_outputs.pop("latents", latents)
+                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
+                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
+                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
+                    negative_pooled_prompt_embeds = callback_outputs.pop(
+                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
+                    )
+                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
+
+                # call the callback, if provided
+                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+                    progress_bar.update()
+                    if callback is not None and i % callback_steps == 0:
+                        step_idx = i // getattr(self.scheduler, "order", 1)
+                        callback(step_idx, t, latents)
+
+                if XLA_AVAILABLE:
+                    xm.mark_step()
+
+        if not output_type == "latent":
+            # make sure the VAE is in float32 mode, as it overflows in float16
+            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
+
+            if needs_upcasting:
+                self.upcast_vae()
+                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
+
+            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
+
+            # cast back to fp16 if needed
+            if needs_upcasting:
+                self.vae.to(dtype=torch.float16)
+        else:
+            image = latents
+
+        if not output_type == "latent":
+            # apply watermark if available
+            if self.watermark is not None:
+                image = self.watermark.apply_watermark(image)
+
+            image = self.image_processor.postprocess(image, output_type=output_type)
+
+        # Offload all models
+        self.maybe_free_model_hooks()
+
+        if not return_dict:
+            return (image,)
+
+        return StableDiffusionXLPipelineOutput(images=image)