diff --git "a/main/fresco_v2v.py" "b/main/fresco_v2v.py"
new file mode 100644--- /dev/null
+++ "b/main/fresco_v2v.py"
@@ -0,0 +1,2511 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import gc
+import inspect
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union
+
+import numpy as np
+import PIL.Image
+import torch
+import torch.nn.functional as F
+import torch.utils.model_zoo
+from einops import rearrange, repeat
+from gmflow.gmflow import GMFlow
+from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
+
+from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
+from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
+from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
+from diffusers.models.attention_processor import AttnProcessor2_0
+from diffusers.models.lora import adjust_lora_scale_text_encoder
+from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput
+from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
+from diffusers.pipelines.controlnet.pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline
+from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
+from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
+from diffusers.schedulers import KarrasDiffusionSchedulers
+from diffusers.utils import (
+    USE_PEFT_BACKEND,
+    deprecate,
+    logging,
+    scale_lora_layers,
+    unscale_lora_layers,
+)
+from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
+
+
+logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
+
+
+def clear_cache():
+    gc.collect()
+    torch.cuda.empty_cache()
+
+
+def coords_grid(b, h, w, homogeneous=False, device=None):
+    y, x = torch.meshgrid(torch.arange(h), torch.arange(w))  # [H, W]
+
+    stacks = [x, y]
+
+    if homogeneous:
+        ones = torch.ones_like(x)  # [H, W]
+        stacks.append(ones)
+
+    grid = torch.stack(stacks, dim=0).float()  # [2, H, W] or [3, H, W]
+
+    grid = grid[None].repeat(b, 1, 1, 1)  # [B, 2, H, W] or [B, 3, H, W]
+
+    if device is not None:
+        grid = grid.to(device)
+
+    return grid
+
+
+def bilinear_sample(img, sample_coords, mode="bilinear", padding_mode="zeros", return_mask=False):
+    # img: [B, C, H, W]
+    # sample_coords: [B, 2, H, W] in image scale
+    if sample_coords.size(1) != 2:  # [B, H, W, 2]
+        sample_coords = sample_coords.permute(0, 3, 1, 2)
+
+    b, _, h, w = sample_coords.shape
+
+    # Normalize to [-1, 1]
+    x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1
+    y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1
+
+    grid = torch.stack([x_grid, y_grid], dim=-1)  # [B, H, W, 2]
+
+    img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True)
+
+    if return_mask:
+        mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1)  # [B, H, W]
+
+        return img, mask
+
+    return img
+
+
+class Dilate:
+    def __init__(self, kernel_size=7, channels=1, device="cpu"):
+        self.kernel_size = kernel_size
+        self.channels = channels
+        gaussian_kernel = torch.ones(1, 1, self.kernel_size, self.kernel_size)
+        gaussian_kernel = gaussian_kernel.repeat(self.channels, 1, 1, 1)
+        self.mean = (self.kernel_size - 1) // 2
+        gaussian_kernel = gaussian_kernel.to(device)
+        self.gaussian_filter = gaussian_kernel
+
+    def __call__(self, x):
+        x = F.pad(x, (self.mean, self.mean, self.mean, self.mean), "replicate")
+        return torch.clamp(F.conv2d(x, self.gaussian_filter, bias=None), 0, 1)
+
+
+def flow_warp(feature, flow, mask=False, mode="bilinear", padding_mode="zeros"):
+    b, c, h, w = feature.size()
+    assert flow.size(1) == 2
+
+    grid = coords_grid(b, h, w).to(flow.device) + flow  # [B, 2, H, W]
+    grid = grid.to(feature.dtype)
+    return bilinear_sample(feature, grid, mode=mode, padding_mode=padding_mode, return_mask=mask)
+
+
+def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.01, beta=0.5):
+    # fwd_flow, bwd_flow: [B, 2, H, W]
+    # alpha and beta values are following UnFlow
+    # (https://arxiv.org/abs/1711.07837)
+    assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4
+    assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2
+    flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1)  # [B, H, W]
+
+    warped_bwd_flow = flow_warp(bwd_flow, fwd_flow)  # [B, 2, H, W]
+    warped_fwd_flow = flow_warp(fwd_flow, bwd_flow)  # [B, 2, H, W]
+
+    diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1)  # [B, H, W]
+    diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1)
+
+    threshold = alpha * flow_mag + beta
+
+    fwd_occ = (diff_fwd > threshold).float()  # [B, H, W]
+    bwd_occ = (diff_bwd > threshold).float()
+
+    return fwd_occ, bwd_occ
+
+
+def numpy2tensor(img):
+    x0 = torch.from_numpy(img.copy()).float().cuda() / 255.0 * 2.0 - 1.0
+    x0 = torch.stack([x0], dim=0)
+    # einops.rearrange(x0, 'b h w c -> b c h w').clone()
+    return x0.permute(0, 3, 1, 2)
+
+
+def calc_mean_std(feat, eps=1e-5, chunk=1):
+    size = feat.size()
+    assert len(size) == 4
+    if chunk == 2:
+        feat = torch.cat(feat.chunk(2), dim=3)
+    N, C = size[:2]
+    feat_var = feat.view(N // chunk, C, -1).var(dim=2) + eps
+    feat_std = feat_var.sqrt().view(N, C, 1, 1)
+    feat_mean = feat.view(N // chunk, C, -1).mean(dim=2).view(N // chunk, C, 1, 1)
+    return feat_mean.repeat(chunk, 1, 1, 1), feat_std.repeat(chunk, 1, 1, 1)
+
+
+def adaptive_instance_normalization(content_feat, style_feat, chunk=1):
+    assert content_feat.size()[:2] == style_feat.size()[:2]
+    size = content_feat.size()
+    style_mean, style_std = calc_mean_std(style_feat, chunk)
+    content_mean, content_std = calc_mean_std(content_feat)
+
+    normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
+    return normalized_feat * style_std.expand(size) + style_mean.expand(size)
+
+
+def optimize_feature(
+    sample, flows, occs, correlation_matrix=[], intra_weight=1e2, iters=20, unet_chunk_size=2, optimize_temporal=True
+):
+    """
+    FRESO-guided latent feature optimization
+    * optimize spatial correspondence (match correlation_matrix)
+    * optimize temporal correspondence (match warped_image)
+    """
+    if (flows is None or occs is None or (not optimize_temporal)) and (
+        intra_weight == 0 or len(correlation_matrix) == 0
+    ):
+        return sample
+    # flows=[fwd_flows, bwd_flows]: (N-1)*2*H1*W1
+    # occs=[fwd_occs, bwd_occs]: (N-1)*H1*W1
+    # sample: 2N*C*H*W
+    torch.cuda.empty_cache()
+    video_length = sample.shape[0] // unet_chunk_size
+    latent = rearrange(sample.to(torch.float32), "(b f) c h w -> b f c h w", f=video_length)
+
+    cs = torch.nn.Parameter((latent.detach().clone()))
+    optimizer = torch.optim.Adam([cs], lr=0.2)
+
+    # unify resolution
+    if flows is not None and occs is not None:
+        scale = sample.shape[2] * 1.0 / flows[0].shape[2]
+        kernel = int(1 / scale)
+        bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode="bilinear").repeat(
+            unet_chunk_size, 1, 1, 1
+        )
+        bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel).repeat(
+            unet_chunk_size, 1, 1, 1
+        )  # 2(N-1)*1*H1*W1
+        fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode="bilinear").repeat(
+            unet_chunk_size, 1, 1, 1
+        )
+        fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel).repeat(
+            unet_chunk_size, 1, 1, 1
+        )  # 2(N-1)*1*H1*W1
+        # match frame 0,1,2,3 and frame 1,2,3,0
+        reshuffle_list = list(range(1, video_length)) + [0]
+
+    # attention_probs is the GRAM matrix of the normalized feature
+    attention_probs = None
+    for tmp in correlation_matrix:
+        if sample.shape[2] * sample.shape[3] == tmp.shape[1]:
+            attention_probs = tmp  # 2N*HW*HW
+            break
+
+    n_iter = [0]
+    while n_iter[0] < iters:
+
+        def closure():
+            optimizer.zero_grad()
+
+            loss = 0
+
+            # temporal consistency loss
+            if optimize_temporal and flows is not None and occs is not None:
+                c1 = rearrange(cs[:, :], "b f c h w -> (b f) c h w")
+                c2 = rearrange(cs[:, reshuffle_list], "b f c h w -> (b f) c h w")
+                warped_image1 = flow_warp(c1, bwd_flow_)
+                warped_image2 = flow_warp(c2, fwd_flow_)
+                loss = (
+                    abs((c2 - warped_image1) * (1 - bwd_occ_)) + abs((c1 - warped_image2) * (1 - fwd_occ_))
+                ).mean() * 2
+
+            # spatial consistency loss
+            if attention_probs is not None and intra_weight > 0:
+                cs_vector = rearrange(cs, "b f c h w -> (b f) (h w) c")
+                # attention_scores = torch.bmm(cs_vector, cs_vector.transpose(-1, -2))
+                # cs_attention_probs = attention_scores.softmax(dim=-1)
+                cs_vector = cs_vector / ((cs_vector**2).sum(dim=2, keepdims=True) ** 0.5)
+                cs_attention_probs = torch.bmm(cs_vector, cs_vector.transpose(-1, -2))
+                tmp = F.l1_loss(cs_attention_probs, attention_probs) * intra_weight
+                loss = tmp + loss
+
+            loss.backward()
+            n_iter[0] += 1
+
+            return loss
+
+        optimizer.step(closure)
+
+    torch.cuda.empty_cache()
+    return adaptive_instance_normalization(rearrange(cs.data.to(sample.dtype), "b f c h w -> (b f) c h w"), sample)
+
+
+@torch.no_grad()
+def warp_tensor(sample, flows, occs, saliency, unet_chunk_size):
+    """
+    Warp images or features based on optical flow
+    Fuse the warped imges or features based on occusion masks and saliency map
+    """
+    scale = sample.shape[2] * 1.0 / flows[0].shape[2]
+    kernel = int(1 / scale)
+    bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode="bilinear")
+    bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel)  # (N-1)*1*H1*W1
+    if scale == 1:
+        bwd_occ_ = Dilate(kernel_size=13, device=sample.device)(bwd_occ_)
+    fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode="bilinear")
+    fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel)  # (N-1)*1*H1*W1
+    if scale == 1:
+        fwd_occ_ = Dilate(kernel_size=13, device=sample.device)(fwd_occ_)
+    scale2 = sample.shape[2] * 1.0 / saliency.shape[2]
+    saliency = F.interpolate(saliency, scale_factor=scale2, mode="bilinear")
+    latent = sample.to(torch.float32)
+    video_length = sample.shape[0] // unet_chunk_size
+    warp_saliency = flow_warp(saliency, bwd_flow_)
+    warp_saliency_ = flow_warp(saliency[0:1], fwd_flow_[video_length - 1 : video_length])
+
+    for j in range(unet_chunk_size):
+        for ii in range(video_length - 1):
+            i = video_length * j + ii
+            warped_image = flow_warp(latent[i : i + 1], bwd_flow_[ii : ii + 1])
+            mask = (1 - bwd_occ_[ii : ii + 1]) * saliency[ii + 1 : ii + 2] * warp_saliency[ii : ii + 1]
+            latent[i + 1 : i + 2] = latent[i + 1 : i + 2] * (1 - mask) + warped_image * mask
+        i = video_length * j
+        ii = video_length - 1
+        warped_image = flow_warp(latent[i : i + 1], fwd_flow_[ii : ii + 1])
+        mask = (1 - fwd_occ_[ii : ii + 1]) * saliency[ii : ii + 1] * warp_saliency_
+        latent[ii + i : ii + i + 1] = latent[ii + i : ii + i + 1] * (1 - mask) + warped_image * mask
+
+    return latent.to(sample.dtype)
+
+
+def my_forward(
+    self,
+    steps=[],
+    layers=[0, 1, 2, 3],
+    flows=None,
+    occs=None,
+    correlation_matrix=[],
+    intra_weight=1e2,
+    iters=20,
+    optimize_temporal=True,
+    saliency=None,
+):
+    """
+    Hacked pipe.unet.forward()
+    copied from https://github.com/huggingface/diffusers/blob/v0.19.3/src/diffusers/models/unet_2d_condition.py#L700
+    if you are using a new version of diffusers, please copy the source code and modify it accordingly (find [HACK] in the code)
+    * restore and return the decoder features
+    * optimize the decoder features
+    * perform background smoothing
+    """
+
+    def forward(
+        sample: torch.FloatTensor,
+        timestep: Union[torch.Tensor, float, int],
+        encoder_hidden_states: torch.Tensor,
+        class_labels: Optional[torch.Tensor] = None,
+        timestep_cond: Optional[torch.Tensor] = None,
+        attention_mask: Optional[torch.Tensor] = None,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
+        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
+        mid_block_additional_residual: Optional[torch.Tensor] = None,
+        encoder_attention_mask: Optional[torch.Tensor] = None,
+        return_dict: bool = True,
+    ) -> Union[UNet2DConditionOutput, Tuple]:
+        r"""
+        The [`UNet2DConditionModel`] forward method.
+
+        Args:
+            sample (`torch.FloatTensor`):
+                The noisy input tensor with the following shape `(batch, channel, height, width)`.
+            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
+            encoder_hidden_states (`torch.FloatTensor`):
+                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
+            encoder_attention_mask (`torch.Tensor`):
+                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
+                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
+                which adds large negative values to the attention scores corresponding to "discard" tokens.
+            return_dict (`bool`, *optional*, defaults to `True`):
+                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
+                tuple.
+            cross_attention_kwargs (`dict`, *optional*):
+                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
+            added_cond_kwargs: (`dict`, *optional*):
+                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
+                are passed along to the UNet blocks.
+
+        Returns:
+            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
+                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
+                a `tuple` is returned where the first element is the sample tensor.
+        """
+        # By default samples have to be AT least a multiple of the overall upsampling factor.
+        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
+        # However, the upsampling interpolation output size can be forced to fit any upsampling size
+        # on the fly if necessary.
+        default_overall_up_factor = 2**self.num_upsamplers
+
+        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
+        forward_upsample_size = False
+        upsample_size = None
+
+        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
+            logger.info("Forward upsample size to force interpolation output size.")
+            forward_upsample_size = True
+
+        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
+        # expects mask of shape:
+        #   [batch, key_tokens]
+        # adds singleton query_tokens dimension:
+        #   [batch,                    1, key_tokens]
+        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
+        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
+        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
+        if attention_mask is not None:
+            # assume that mask is expressed as:
+            #   (1 = keep,      0 = discard)
+            # convert mask into a bias that can be added to attention scores:
+            #       (keep = +0,     discard = -10000.0)
+            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
+            attention_mask = attention_mask.unsqueeze(1)
+
+        # convert encoder_attention_mask to a bias the same way we do for attention_mask
+        if encoder_attention_mask is not None:
+            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
+            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
+
+        # 0. center input if necessary
+        if self.config.center_input_sample:
+            sample = 2 * sample - 1.0
+
+        # 1. time
+        timesteps = timestep
+        if not torch.is_tensor(timesteps):
+            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
+            # This would be a good case for the `match` statement (Python 3.10+)
+            is_mps = sample.device.type == "mps"
+            if isinstance(timestep, float):
+                dtype = torch.float32 if is_mps else torch.float64
+            else:
+                dtype = torch.int32 if is_mps else torch.int64
+            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
+        elif len(timesteps.shape) == 0:
+            timesteps = timesteps[None].to(sample.device)
+
+        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
+        timesteps = timesteps.expand(sample.shape[0])
+
+        t_emb = self.time_proj(timesteps)
+
+        # `Timesteps` does not contain any weights and will always return f32 tensors
+        # but time_embedding might actually be running in fp16. so we need to cast here.
+        # there might be better ways to encapsulate this.
+        t_emb = t_emb.to(dtype=sample.dtype)
+
+        emb = self.time_embedding(t_emb, timestep_cond)
+        aug_emb = None
+
+        if self.class_embedding is not None:
+            if class_labels is None:
+                raise ValueError("class_labels should be provided when num_class_embeds > 0")
+
+            if self.config.class_embed_type == "timestep":
+                class_labels = self.time_proj(class_labels)
+
+                # `Timesteps` does not contain any weights and will always return f32 tensors
+                # there might be better ways to encapsulate this.
+                class_labels = class_labels.to(dtype=sample.dtype)
+
+            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
+
+            if self.config.class_embeddings_concat:
+                emb = torch.cat([emb, class_emb], dim=-1)
+            else:
+                emb = emb + class_emb
+
+        if self.config.addition_embed_type == "text":
+            aug_emb = self.add_embedding(encoder_hidden_states)
+        elif self.config.addition_embed_type == "text_image":
+            # Kandinsky 2.1 - style
+            if "image_embeds" not in added_cond_kwargs:
+                raise ValueError(
+                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
+                )
+
+            image_embs = added_cond_kwargs.get("image_embeds")
+            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
+            aug_emb = self.add_embedding(text_embs, image_embs)
+        elif self.config.addition_embed_type == "text_time":
+            # SDXL - style
+            if "text_embeds" not in added_cond_kwargs:
+                raise ValueError(
+                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
+                )
+            text_embeds = added_cond_kwargs.get("text_embeds")
+            if "time_ids" not in added_cond_kwargs:
+                raise ValueError(
+                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
+                )
+            time_ids = added_cond_kwargs.get("time_ids")
+            time_embeds = self.add_time_proj(time_ids.flatten())
+            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
+
+            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
+            add_embeds = add_embeds.to(emb.dtype)
+            aug_emb = self.add_embedding(add_embeds)
+        elif self.config.addition_embed_type == "image":
+            # Kandinsky 2.2 - style
+            if "image_embeds" not in added_cond_kwargs:
+                raise ValueError(
+                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
+                )
+            image_embs = added_cond_kwargs.get("image_embeds")
+            aug_emb = self.add_embedding(image_embs)
+        elif self.config.addition_embed_type == "image_hint":
+            # Kandinsky 2.2 - style
+            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
+                raise ValueError(
+                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
+                )
+            image_embs = added_cond_kwargs.get("image_embeds")
+            hint = added_cond_kwargs.get("hint")
+            aug_emb, hint = self.add_embedding(image_embs, hint)
+            sample = torch.cat([sample, hint], dim=1)
+
+        emb = emb + aug_emb if aug_emb is not None else emb
+
+        if self.time_embed_act is not None:
+            emb = self.time_embed_act(emb)
+
+        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
+            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
+        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
+            # Kadinsky 2.1 - style
+            if "image_embeds" not in added_cond_kwargs:
+                raise ValueError(
+                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
+                )
+
+            image_embeds = added_cond_kwargs.get("image_embeds")
+            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
+        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
+            # Kandinsky 2.2 - style
+            if "image_embeds" not in added_cond_kwargs:
+                raise ValueError(
+                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
+                )
+            image_embeds = added_cond_kwargs.get("image_embeds")
+            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
+        # 2. pre-process
+        sample = self.conv_in(sample)
+
+        # 3. down
+
+        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
+        is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
+
+        down_block_res_samples = (sample,)
+        for downsample_block in self.down_blocks:
+            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
+                # For t2i-adapter CrossAttnDownBlock2D
+                additional_residuals = {}
+                if is_adapter and len(down_block_additional_residuals) > 0:
+                    additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
+
+                sample, res_samples = downsample_block(
+                    hidden_states=sample,
+                    temb=emb,
+                    encoder_hidden_states=encoder_hidden_states,
+                    attention_mask=attention_mask,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    encoder_attention_mask=encoder_attention_mask,
+                    **additional_residuals,
+                )
+            else:
+                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
+
+                if is_adapter and len(down_block_additional_residuals) > 0:
+                    sample += down_block_additional_residuals.pop(0)
+            down_block_res_samples += res_samples
+
+        if is_controlnet:
+            new_down_block_res_samples = ()
+
+            for down_block_res_sample, down_block_additional_residual in zip(
+                down_block_res_samples, down_block_additional_residuals
+            ):
+                down_block_res_sample = down_block_res_sample + down_block_additional_residual
+                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
+
+            down_block_res_samples = new_down_block_res_samples
+
+        # 4. mid
+        if self.mid_block is not None:
+            sample = self.mid_block(
+                sample,
+                emb,
+                encoder_hidden_states=encoder_hidden_states,
+                attention_mask=attention_mask,
+                cross_attention_kwargs=cross_attention_kwargs,
+                encoder_attention_mask=encoder_attention_mask,
+            )
+
+        if is_controlnet:
+            sample = sample + mid_block_additional_residual
+
+        # 5. up
+        """
+        [HACK] restore the decoder features in up_samples
+        """
+        up_samples = ()
+        # down_samples = ()
+        for i, upsample_block in enumerate(self.up_blocks):
+            is_final_block = i == len(self.up_blocks) - 1
+
+            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
+            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
+
+            """
+            [HACK] restore the decoder features in up_samples
+            [HACK] optimize the decoder features
+            [HACK] perform background smoothing
+            """
+            if i in layers:
+                up_samples += (sample,)
+            if timestep in steps and i in layers:
+                sample = optimize_feature(
+                    sample, flows, occs, correlation_matrix, intra_weight, iters, optimize_temporal=optimize_temporal
+                )
+                if saliency is not None:
+                    sample = warp_tensor(sample, flows, occs, saliency, 2)
+
+            # if we have not reached the final block and need to forward the
+            # upsample size, we do it here
+            if not is_final_block and forward_upsample_size:
+                upsample_size = down_block_res_samples[-1].shape[2:]
+
+            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
+                sample = upsample_block(
+                    hidden_states=sample,
+                    temb=emb,
+                    res_hidden_states_tuple=res_samples,
+                    encoder_hidden_states=encoder_hidden_states,
+                    cross_attention_kwargs=cross_attention_kwargs,
+                    upsample_size=upsample_size,
+                    attention_mask=attention_mask,
+                    encoder_attention_mask=encoder_attention_mask,
+                )
+            else:
+                sample = upsample_block(
+                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
+                )
+
+        # 6. post-process
+        if self.conv_norm_out:
+            sample = self.conv_norm_out(sample)
+            sample = self.conv_act(sample)
+        sample = self.conv_out(sample)
+
+        """
+        [HACK] return the output feature as well as the decoder features
+        """
+        if not return_dict:
+            return (sample,) + up_samples
+
+        return UNet2DConditionOutput(sample=sample)
+
+    return forward
+
+
+@torch.no_grad()
+def get_single_mapping_ind(bwd_flow, bwd_occ, imgs, scale=1.0):
+    """
+    FLATTEN: Optical fLow-guided attention (Temoporal-guided attention)
+    Find the correspondence between every pixels in a pair of frames
+
+    [input]
+    bwd_flow: 1*2*H*W
+    bwd_occ: 1*H*W      i.e., f2 = warp(f1, bwd_flow) * bwd_occ
+    imgs: 2*3*H*W       i.e., [f1,f2]
+
+    [output]
+    mapping_ind: pixel index correspondence
+    unlinkedmask: indicate whether a pixel has no correspondence
+    i.e., f2 = f1[mapping_ind] * unlinkedmask
+    """
+    flows = F.interpolate(bwd_flow, scale_factor=1.0 / scale, mode="bilinear")[0][[1, 0]] / scale  # 2*H*W
+    _, H, W = flows.shape
+    masks = torch.logical_not(F.interpolate(bwd_occ[None], scale_factor=1.0 / scale, mode="bilinear") > 0.5)[
+        0
+    ]  # 1*H*W
+    frames = F.interpolate(imgs, scale_factor=1.0 / scale, mode="bilinear").view(2, 3, -1)  # 2*3*HW
+    grid = torch.stack(torch.meshgrid([torch.arange(H), torch.arange(W)]), dim=0).to(flows.device)  # 2*H*W
+    warp_grid = torch.round(grid + flows)
+    mask = torch.logical_and(
+        torch.logical_and(
+            torch.logical_and(torch.logical_and(warp_grid[0] >= 0, warp_grid[0] < H), warp_grid[1] >= 0),
+            warp_grid[1] < W,
+        ),
+        masks[0],
+    ).view(-1)  # HW
+    warp_grid = warp_grid.view(2, -1)  # 2*HW
+    warp_ind = (warp_grid[0] * W + warp_grid[1]).to(torch.long)  # HW
+    mapping_ind = torch.zeros_like(warp_ind) - 1  # HW
+
+    for f0ind, f1ind in enumerate(warp_ind):
+        if mask[f0ind]:
+            if mapping_ind[f1ind] == -1:
+                mapping_ind[f1ind] = f0ind
+            else:
+                targetv = frames[0, :, f1ind]
+                pref0ind = mapping_ind[f1ind]
+                prev = frames[1, :, pref0ind]
+                v = frames[1, :, f0ind]
+                if ((prev - targetv) ** 2).mean() > ((v - targetv) ** 2).mean():
+                    mask[pref0ind] = False
+                    mapping_ind[f1ind] = f0ind
+                else:
+                    mask[f0ind] = False
+
+    unusedind = torch.arange(len(mask)).to(mask.device)[~mask]
+    unlinkedmask = mapping_ind == -1
+    mapping_ind[unlinkedmask] = unusedind
+    return mapping_ind, unlinkedmask
+
+
+@torch.no_grad()
+def get_mapping_ind(bwd_flows, bwd_occs, imgs, scale=1.0):
+    """
+    FLATTEN: Optical fLow-guided attention (Temoporal-guided attention)
+    Find pixel correspondence between every consecutive frames in a batch
+
+    [input]
+    bwd_flow: (N-1)*2*H*W
+    bwd_occ: (N-1)*H*W
+    imgs: N*3*H*W
+
+    [output]
+    fwd_mappings: N*1*HW
+    bwd_mappings: N*1*HW
+    flattn_mask: HW*1*N*N
+    i.e., imgs[i,:,fwd_mappings[i]] corresponds to imgs[0]
+    i.e., imgs[i,:,fwd_mappings[i]][:,bwd_mappings[i]] restore the original imgs[i]
+    """
+    N, H, W = imgs.shape[0], int(imgs.shape[2] // scale), int(imgs.shape[3] // scale)
+    iterattn_mask = torch.ones(H * W, N, N, dtype=torch.bool).to(imgs.device)
+    for i in range(len(imgs) - 1):
+        one_mask = torch.ones(N, N, dtype=torch.bool).to(imgs.device)
+        one_mask[: i + 1, i + 1 :] = False
+        one_mask[i + 1 :, : i + 1] = False
+        mapping_ind, unlinkedmask = get_single_mapping_ind(
+            bwd_flows[i : i + 1], bwd_occs[i : i + 1], imgs[i : i + 2], scale
+        )
+        if i == 0:
+            fwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)]
+            bwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)]
+        iterattn_mask[unlinkedmask[fwd_mapping[-1]]] = torch.logical_and(
+            iterattn_mask[unlinkedmask[fwd_mapping[-1]]], one_mask
+        )
+        fwd_mapping += [mapping_ind[fwd_mapping[-1]]]
+        bwd_mapping += [torch.sort(fwd_mapping[-1])[1]]
+    fwd_mappings = torch.stack(fwd_mapping, dim=0).unsqueeze(1)
+    bwd_mappings = torch.stack(bwd_mapping, dim=0).unsqueeze(1)
+    return fwd_mappings, bwd_mappings, iterattn_mask.unsqueeze(1)
+
+
+def apply_FRESCO_opt(
+    pipe,
+    steps=[],
+    layers=[0, 1, 2, 3],
+    flows=None,
+    occs=None,
+    correlation_matrix=[],
+    intra_weight=1e2,
+    iters=20,
+    optimize_temporal=True,
+    saliency=None,
+):
+    """
+    Apply FRESCO-based optimization to a StableDiffusionPipeline
+    """
+    pipe.unet.forward = my_forward(
+        pipe.unet, steps, layers, flows, occs, correlation_matrix, intra_weight, iters, optimize_temporal, saliency
+    )
+
+
+@torch.no_grad()
+def get_intraframe_paras(pipe, imgs, frescoProc, prompt_embeds, do_classifier_free_guidance=True, generator=None):
+    """
+    Get parameters for spatial-guided attention and optimization
+    * perform one step denoising
+    * collect attention feature, stored in frescoProc.controller.stored_attn['decoder_attn']
+    * compute the gram matrix of the normalized feature for spatial consistency loss
+    """
+
+    noise_scheduler = pipe.scheduler
+    timestep = noise_scheduler.timesteps[-1]
+    device = pipe._execution_device
+    B, C, H, W = imgs.shape
+
+    frescoProc.controller.disable_controller()
+    apply_FRESCO_opt(pipe)
+    frescoProc.controller.clear_store()
+    frescoProc.controller.enable_store()
+
+    latents = pipe.prepare_latents(
+        imgs.to(pipe.unet.dtype), timestep, B, 1, prompt_embeds.dtype, device, generator=generator, repeat_noise=False
+    )
+
+    latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
+    model_output = pipe.unet(
+        latent_model_input,
+        timestep,
+        encoder_hidden_states=prompt_embeds,
+        cross_attention_kwargs=None,
+        return_dict=False,
+    )
+
+    frescoProc.controller.disable_store()
+
+    # gram matrix of the normalized feature for spatial consistency loss
+    correlation_matrix = []
+    for tmp in model_output[1:]:
+        latent_vector = rearrange(tmp, "b c h w -> b (h w) c")
+        latent_vector = latent_vector / ((latent_vector**2).sum(dim=2, keepdims=True) ** 0.5)
+        attention_probs = torch.bmm(latent_vector, latent_vector.transpose(-1, -2))
+        correlation_matrix += [attention_probs.detach().clone().to(torch.float32)]
+        del attention_probs, latent_vector, tmp
+    del model_output
+
+    clear_cache()
+
+    return correlation_matrix
+
+
+@torch.no_grad()
+def get_flow_and_interframe_paras(flow_model, imgs):
+    """
+    Get parameters for temporal-guided attention and optimization
+    * predict optical flow and occlusion mask
+    * compute pixel index correspondence for FLATTEN
+    """
+    images = torch.stack([torch.from_numpy(img).permute(2, 0, 1).float() for img in imgs], dim=0).cuda()
+    imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0)
+
+    reshuffle_list = list(range(1, len(images))) + [0]
+
+    results_dict = flow_model(
+        images,
+        images[reshuffle_list],
+        attn_splits_list=[2],
+        corr_radius_list=[-1],
+        prop_radius_list=[-1],
+        pred_bidir_flow=True,
+    )
+    flow_pr = results_dict["flow_preds"][-1]  # [2*B, 2, H, W]
+    fwd_flows, bwd_flows = flow_pr.chunk(2)  # [B, 2, H, W]
+    fwd_occs, bwd_occs = forward_backward_consistency_check(fwd_flows, bwd_flows)  # [B, H, W]
+
+    warped_image1 = flow_warp(images, bwd_flows)
+    bwd_occs = torch.clamp(
+        bwd_occs + (abs(images[reshuffle_list] - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0, 1
+    )
+
+    warped_image2 = flow_warp(images[reshuffle_list], fwd_flows)
+    fwd_occs = torch.clamp(fwd_occs + (abs(images - warped_image2).mean(dim=1) > 255 * 0.25).float(), 0, 1)
+
+    attn_mask = []
+    for scale in [8.0, 16.0, 32.0]:
+        bwd_occs_ = F.interpolate(bwd_occs[:-1].unsqueeze(1), scale_factor=1.0 / scale, mode="bilinear")
+        attn_mask += [
+            torch.cat((bwd_occs_[0:1].reshape(1, -1) > -1, bwd_occs_.reshape(bwd_occs_.shape[0], -1) > 0.5), dim=0)
+        ]
+
+    fwd_mappings = []
+    bwd_mappings = []
+    interattn_masks = []
+    for scale in [8.0, 16.0]:
+        fwd_mapping, bwd_mapping, interattn_mask = get_mapping_ind(bwd_flows, bwd_occs, imgs_torch, scale=scale)
+        fwd_mappings += [fwd_mapping]
+        bwd_mappings += [bwd_mapping]
+        interattn_masks += [interattn_mask]
+
+    interattn_paras = {}
+    interattn_paras["fwd_mappings"] = fwd_mappings
+    interattn_paras["bwd_mappings"] = bwd_mappings
+    interattn_paras["interattn_masks"] = interattn_masks
+
+    clear_cache()
+
+    return [fwd_flows, bwd_flows], [fwd_occs, bwd_occs], attn_mask, interattn_paras
+
+
+class AttentionControl:
+    """
+    Control FRESCO-based attention
+    * enable/diable spatial-guided attention
+    * enable/diable temporal-guided attention
+    * enable/diable cross-frame attention
+    * collect intermediate attention feature (for spatial-guided attention)
+    """
+
+    def __init__(self):
+        self.stored_attn = self.get_empty_store()
+        self.store = False
+        self.index = 0
+        self.attn_mask = None
+        self.interattn_paras = None
+        self.use_interattn = False
+        self.use_cfattn = False
+        self.use_intraattn = False
+        self.intraattn_bias = 0
+        self.intraattn_scale_factor = 0.2
+        self.interattn_scale_factor = 0.2
+
+    @staticmethod
+    def get_empty_store():
+        return {
+            "decoder_attn": [],
+        }
+
+    def clear_store(self):
+        del self.stored_attn
+        torch.cuda.empty_cache()
+        gc.collect()
+        self.stored_attn = self.get_empty_store()
+        self.disable_intraattn()
+
+    # store attention feature of the input frame for spatial-guided attention
+    def enable_store(self):
+        self.store = True
+
+    def disable_store(self):
+        self.store = False
+
+    # spatial-guided attention
+    def enable_intraattn(self):
+        self.index = 0
+        self.use_intraattn = True
+        self.disable_store()
+        if len(self.stored_attn["decoder_attn"]) == 0:
+            self.use_intraattn = False
+
+    def disable_intraattn(self):
+        self.index = 0
+        self.use_intraattn = False
+        self.disable_store()
+
+    def disable_cfattn(self):
+        self.use_cfattn = False
+
+    # cross frame attention
+    def enable_cfattn(self, attn_mask=None):
+        if attn_mask:
+            if self.attn_mask:
+                del self.attn_mask
+                torch.cuda.empty_cache()
+            self.attn_mask = attn_mask
+            self.use_cfattn = True
+        else:
+            if self.attn_mask:
+                self.use_cfattn = True
+            else:
+                print("Warning: no valid cross-frame attention parameters available!")
+                self.disable_cfattn()
+
+    def disable_interattn(self):
+        self.use_interattn = False
+
+    # temporal-guided attention
+    def enable_interattn(self, interattn_paras=None):
+        if interattn_paras:
+            if self.interattn_paras:
+                del self.interattn_paras
+                torch.cuda.empty_cache()
+            self.interattn_paras = interattn_paras
+            self.use_interattn = True
+        else:
+            if self.interattn_paras:
+                self.use_interattn = True
+            else:
+                print("Warning: no valid temporal-guided attention parameters available!")
+                self.disable_interattn()
+
+    def disable_controller(self):
+        self.disable_intraattn()
+        self.disable_interattn()
+        self.disable_cfattn()
+
+    def enable_controller(self, interattn_paras=None, attn_mask=None):
+        self.enable_intraattn()
+        self.enable_interattn(interattn_paras)
+        self.enable_cfattn(attn_mask)
+
+    def forward(self, context):
+        if self.store:
+            self.stored_attn["decoder_attn"].append(context.detach())
+        if self.use_intraattn and len(self.stored_attn["decoder_attn"]) > 0:
+            tmp = self.stored_attn["decoder_attn"][self.index]
+            self.index = self.index + 1
+            if self.index >= len(self.stored_attn["decoder_attn"]):
+                self.index = 0
+                self.disable_store()
+            return tmp
+        return context
+
+    def __call__(self, context):
+        context = self.forward(context)
+        return context
+
+
+class FRESCOAttnProcessor2_0:
+    """
+    Hack self attention to FRESCO-based attention
+    * adding spatial-guided attention
+    * adding temporal-guided attention
+    * adding cross-frame attention
+
+    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
+    Usage
+    frescoProc = FRESCOAttnProcessor2_0(2, attn_mask)
+    attnProc = AttnProcessor2_0()
+
+    attn_processor_dict = {}
+    for k in pipe.unet.attn_processors.keys():
+        if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"):
+            attn_processor_dict[k] = frescoProc
+        else:
+            attn_processor_dict[k] = attnProc
+    pipe.unet.set_attn_processor(attn_processor_dict)
+    """
+
+    def __init__(self, unet_chunk_size=2, controller=None):
+        if not hasattr(F, "scaled_dot_product_attention"):
+            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
+        self.unet_chunk_size = unet_chunk_size
+        self.controller = controller
+
+    def __call__(
+        self,
+        attn,
+        hidden_states,
+        encoder_hidden_states=None,
+        attention_mask=None,
+        temb=None,
+    ):
+        residual = hidden_states
+
+        if attn.spatial_norm is not None:
+            hidden_states = attn.spatial_norm(hidden_states, temb)
+
+        input_ndim = hidden_states.ndim
+
+        if input_ndim == 4:
+            batch_size, channel, height, width = hidden_states.shape
+            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
+
+        batch_size, sequence_length, _ = (
+            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
+        )
+
+        if attention_mask is not None:
+            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
+            # scaled_dot_product_attention expects attention_mask shape to be
+            # (batch, heads, source_length, target_length)
+            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
+
+        if attn.group_norm is not None:
+            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
+
+        query = attn.to_q(hidden_states)
+
+        crossattn = False
+        if encoder_hidden_states is None:
+            encoder_hidden_states = hidden_states
+            if self.controller and self.controller.store:
+                self.controller(hidden_states.detach().clone())
+        else:
+            crossattn = True
+            if attn.norm_cross:
+                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
+
+        # BC * HW * 8D
+        key = attn.to_k(encoder_hidden_states)
+        value = attn.to_v(encoder_hidden_states)
+
+        query_raw, key_raw = None, None
+        if self.controller and self.controller.use_interattn and (not crossattn):
+            query_raw, key_raw = query.clone(), key.clone()
+
+        inner_dim = key.shape[-1]  # 8D
+        head_dim = inner_dim // attn.heads  # D
+
+        """for efficient cross-frame attention"""
+        if self.controller and self.controller.use_cfattn and (not crossattn):
+            video_length = key.size()[0] // self.unet_chunk_size
+            former_frame_index = [0] * video_length
+            attn_mask = None
+            if self.controller.attn_mask is not None:
+                for m in self.controller.attn_mask:
+                    if m.shape[1] == key.shape[1]:
+                        attn_mask = m
+            # BC * HW * 8D --> B * C * HW * 8D
+            key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
+            # B * C * HW * 8D --> B * C * HW * 8D
+            if attn_mask is None:
+                key = key[:, former_frame_index]
+            else:
+                key = repeat(key[:, attn_mask], "b d c -> b f d c", f=video_length)
+            # B * C * HW * 8D --> BC * HW * 8D
+            key = rearrange(key, "b f d c -> (b f) d c").detach()
+            value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
+            if attn_mask is None:
+                value = value[:, former_frame_index]
+            else:
+                value = repeat(value[:, attn_mask], "b d c -> b f d c", f=video_length)
+            value = rearrange(value, "b f d c -> (b f) d c").detach()
+
+        # BC * HW * 8D --> BC * HW * 8 * D --> BC * 8 * HW * D
+        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+        # BC * 8 * HW2 * D
+        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+        # BC * 8 * HW2 * D2
+        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+
+        """for spatial-guided intra-frame attention"""
+        if self.controller and self.controller.use_intraattn and (not crossattn):
+            ref_hidden_states = self.controller(None)
+            assert ref_hidden_states.shape == encoder_hidden_states.shape
+            query_ = attn.to_q(ref_hidden_states)
+            key_ = attn.to_k(ref_hidden_states)
+
+            # BC * 8 * HW * D
+            query_ = query_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+            key_ = key_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
+            query = F.scaled_dot_product_attention(
+                query_,
+                key_ * self.controller.intraattn_scale_factor,
+                query,
+                attn_mask=torch.eye(query_.size(-2), key_.size(-2), dtype=query.dtype, device=query.device)
+                * self.controller.intraattn_bias,
+            ).detach()
+
+            del query_, key_
+            torch.cuda.empty_cache()
+
+        # the output of sdp = (batch, num_heads, seq_len, head_dim)
+        # TODO: add support for attn.scale when we move to Torch 2.1
+        # output: BC * 8 * HW * D2
+        hidden_states = F.scaled_dot_product_attention(
+            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
+        )
+
+        """for temporal-guided inter-frame attention (FLATTEN)"""
+        if self.controller and self.controller.use_interattn and (not crossattn):
+            del query, key, value
+            torch.cuda.empty_cache()
+            bwd_mapping = None
+            fwd_mapping = None
+            for i, f in enumerate(self.controller.interattn_paras["fwd_mappings"]):
+                if f.shape[2] == hidden_states.shape[2]:
+                    fwd_mapping = f
+                    bwd_mapping = self.controller.interattn_paras["bwd_mappings"][i]
+                    interattn_mask = self.controller.interattn_paras["interattn_masks"][i]
+            video_length = key_raw.size()[0] // self.unet_chunk_size
+            # BC * HW * 8D --> C * 8BD * HW
+            key = rearrange(key_raw, "(b f) d c -> f (b c) d", f=video_length)
+            query = rearrange(query_raw, "(b f) d c -> f (b c) d", f=video_length)
+            # BC * 8 * HW * D --> C * 8BD * HW
+            # key = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ########
+            # query = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) #######
+
+            value = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length)
+            key = torch.gather(key, 2, fwd_mapping.expand(-1, key.shape[1], -1))
+            query = torch.gather(query, 2, fwd_mapping.expand(-1, query.shape[1], -1))
+            value = torch.gather(value, 2, fwd_mapping.expand(-1, value.shape[1], -1))
+            # C * 8BD * HW --> BHW, C, 8D
+            key = rearrange(key, "f (b c) d -> (b d) f c", b=self.unet_chunk_size)
+            query = rearrange(query, "f (b c) d -> (b d) f c", b=self.unet_chunk_size)
+            value = rearrange(value, "f (b c) d -> (b d) f c", b=self.unet_chunk_size)
+            # BHW * C * 8D --> BHW * C * 8 * D--> BHW * 8 * C * D
+            query = query.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach()
+            key = key.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach()
+            value = value.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach()
+            hidden_states_ = F.scaled_dot_product_attention(
+                query,
+                key * self.controller.interattn_scale_factor,
+                value,
+                # .to(query.dtype)-1.0) * 1e6 -
+                attn_mask=(interattn_mask.repeat(self.unet_chunk_size, 1, 1, 1)),
+                # torch.eye(interattn_mask.shape[2]).to(query.device).to(query.dtype) * 1e4,
+            )
+
+            # BHW * 8 * C * D --> C * 8BD * HW
+            hidden_states_ = rearrange(hidden_states_, "(b d) h f c -> f (b h c) d", b=self.unet_chunk_size)
+            hidden_states_ = torch.gather(
+                hidden_states_, 2, bwd_mapping.expand(-1, hidden_states_.shape[1], -1)
+            ).detach()
+            # C * 8BD * HW --> BC * 8 * HW * D
+            hidden_states = rearrange(
+                hidden_states_, "f (b h c) d -> (b f) h d c", b=self.unet_chunk_size, h=attn.heads
+            )
+
+        # BC * 8 * HW * D --> BC * HW * 8D
+        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
+        hidden_states = hidden_states.to(query.dtype)
+
+        # linear proj
+        hidden_states = attn.to_out[0](hidden_states)
+        # dropout
+        hidden_states = attn.to_out[1](hidden_states)
+
+        if input_ndim == 4:
+            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
+
+        if attn.residual_connection:
+            hidden_states = hidden_states + residual
+
+        hidden_states = hidden_states / attn.rescale_output_factor
+
+        return hidden_states
+
+
+def apply_FRESCO_attn(pipe):
+    """
+    Apply FRESCO-guided attention to a StableDiffusionPipeline
+    """
+    frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl())
+    attnProc = AttnProcessor2_0()
+    attn_processor_dict = {}
+    for k in pipe.unet.attn_processors.keys():
+        if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"):
+            attn_processor_dict[k] = frescoProc
+        else:
+            attn_processor_dict[k] = attnProc
+    pipe.unet.set_attn_processor(attn_processor_dict)
+    return frescoProc
+
+
+def retrieve_latents(
+    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
+):
+    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
+        return encoder_output.latent_dist.sample(generator)
+    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
+        return encoder_output.latent_dist.mode()
+    elif hasattr(encoder_output, "latents"):
+        return encoder_output.latents
+    else:
+        raise AttributeError("Could not access latents of provided encoder_output")
+
+
+def prepare_image(image):
+    if isinstance(image, torch.Tensor):
+        # Batch single image
+        if image.ndim == 3:
+            image = image.unsqueeze(0)
+
+        image = image.to(dtype=torch.float32)
+    else:
+        # preprocess image
+        if isinstance(image, (PIL.Image.Image, np.ndarray)):
+            image = [image]
+
+        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
+            image = [np.array(i.convert("RGB"))[None, :] for i in image]
+            image = np.concatenate(image, axis=0)
+        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
+            image = np.concatenate([i[None, :] for i in image], axis=0)
+
+        image = image.transpose(0, 3, 1, 2)
+        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
+
+    return image
+
+
+class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
+    r"""
+    Pipeline for video-to-video translation using Stable Diffusion with FRESCO Algorithm.
+
+    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
+    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
+
+    The pipeline also inherits the following loading methods:
+        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
+        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
+        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
+        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
+        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
+
+    Args:
+        vae ([`AutoencoderKL`]):
+            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
+        text_encoder ([`~transformers.CLIPTextModel`]):
+            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
+        tokenizer ([`~transformers.CLIPTokenizer`]):
+            A `CLIPTokenizer` to tokenize text.
+        unet ([`UNet2DConditionModel`]):
+            A `UNet2DConditionModel` to denoise the encoded image latents.
+        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
+            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
+            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
+            additional conditioning.
+        scheduler ([`SchedulerMixin`]):
+            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
+            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
+        safety_checker ([`StableDiffusionSafetyChecker`]):
+            Classification module that estimates whether generated images could be considered offensive or harmful.
+            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
+            about a model's potential harms.
+        feature_extractor ([`~transformers.CLIPImageProcessor`]):
+            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
+    """
+
+    model_cpu_offload_seq = "text_encoder->unet->vae"
+    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
+    _exclude_from_cpu_offload = ["safety_checker"]
+    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
+
+    def __init__(
+        self,
+        vae: AutoencoderKL,
+        text_encoder: CLIPTextModel,
+        tokenizer: CLIPTokenizer,
+        unet: UNet2DConditionModel,
+        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
+        scheduler: KarrasDiffusionSchedulers,
+        safety_checker: StableDiffusionSafetyChecker,
+        feature_extractor: CLIPImageProcessor,
+        image_encoder: CLIPVisionModelWithProjection = None,
+        requires_safety_checker: bool = True,
+    ):
+        super().__init__(
+            vae,
+            text_encoder,
+            tokenizer,
+            unet,
+            controlnet,
+            scheduler,
+            safety_checker,
+            feature_extractor,
+            image_encoder,
+            requires_safety_checker,
+        )
+
+        if safety_checker is None and requires_safety_checker:
+            logger.warning(
+                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
+                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
+                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
+                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
+                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
+                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
+            )
+
+        if safety_checker is not None and feature_extractor is None:
+            raise ValueError(
+                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
+                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
+            )
+
+        if isinstance(controlnet, (list, tuple)):
+            controlnet = MultiControlNetModel(controlnet)
+
+        self.register_modules(
+            vae=vae,
+            text_encoder=text_encoder,
+            tokenizer=tokenizer,
+            unet=unet,
+            controlnet=controlnet,
+            scheduler=scheduler,
+            safety_checker=safety_checker,
+            feature_extractor=feature_extractor,
+            image_encoder=image_encoder,
+        )
+        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
+        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
+        self.control_image_processor = VaeImageProcessor(
+            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
+        )
+        self.register_to_config(requires_safety_checker=requires_safety_checker)
+
+        frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl())
+        attnProc = AttnProcessor2_0()
+        attn_processor_dict = {}
+        for k in self.unet.attn_processors.keys():
+            if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"):
+                attn_processor_dict[k] = frescoProc
+            else:
+                attn_processor_dict[k] = attnProc
+        self.unet.set_attn_processor(attn_processor_dict)
+        self.frescoProc = frescoProc
+
+        flow_model = GMFlow(
+            feature_channels=128,
+            num_scales=1,
+            upsample_factor=8,
+            num_head=1,
+            attention_type="swin",
+            ffn_dim_expansion=4,
+            num_transformer_layers=6,
+        ).to(self.device)
+
+        checkpoint = torch.utils.model_zoo.load_url(
+            "https://huggingface.co/Anonymous-sub/Rerender/resolve/main/models/gmflow_sintel-0c07dcb3.pth",
+            map_location=lambda storage, loc: storage,
+        )
+        weights = checkpoint["model"] if "model" in checkpoint else checkpoint
+        flow_model.load_state_dict(weights, strict=False)
+        flow_model.eval()
+        self.flow_model = flow_model
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
+    def _encode_prompt(
+        self,
+        prompt,
+        device,
+        num_images_per_prompt,
+        do_classifier_free_guidance,
+        negative_prompt=None,
+        prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+        lora_scale: Optional[float] = None,
+        **kwargs,
+    ):
+        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
+        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
+
+        prompt_embeds_tuple = self.encode_prompt(
+            prompt=prompt,
+            device=device,
+            num_images_per_prompt=num_images_per_prompt,
+            do_classifier_free_guidance=do_classifier_free_guidance,
+            negative_prompt=negative_prompt,
+            prompt_embeds=prompt_embeds,
+            negative_prompt_embeds=negative_prompt_embeds,
+            lora_scale=lora_scale,
+            **kwargs,
+        )
+
+        # concatenate for backwards comp
+        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
+
+        return prompt_embeds
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
+    def encode_prompt(
+        self,
+        prompt,
+        device,
+        num_images_per_prompt,
+        do_classifier_free_guidance,
+        negative_prompt=None,
+        prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+        lora_scale: Optional[float] = None,
+        clip_skip: Optional[int] = None,
+    ):
+        r"""
+        Encodes the prompt into text encoder hidden states.
+
+        Args:
+            prompt (`str` or `List[str]`, *optional*):
+                prompt to be encoded
+            device: (`torch.device`):
+                torch device
+            num_images_per_prompt (`int`):
+                number of images that should be generated per prompt
+            do_classifier_free_guidance (`bool`):
+                whether to use classifier free guidance or not
+            negative_prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts not to guide the image generation. If not defined, one has to pass
+                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
+                less than `1`).
+            prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
+                provided, text embeddings will be generated from `prompt` input argument.
+            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
+                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
+                argument.
+            lora_scale (`float`, *optional*):
+                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
+            clip_skip (`int`, *optional*):
+                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+                the output of the pre-final layer will be used for computing the prompt embeddings.
+        """
+        # set lora scale so that monkey patched LoRA
+        # function of text encoder can correctly access it
+        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
+            self._lora_scale = lora_scale
+
+            # dynamically adjust the LoRA scale
+            if not USE_PEFT_BACKEND:
+                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
+            else:
+                scale_lora_layers(self.text_encoder, lora_scale)
+
+        if prompt is not None and isinstance(prompt, str):
+            batch_size = 1
+        elif prompt is not None and isinstance(prompt, list):
+            batch_size = len(prompt)
+        else:
+            batch_size = prompt_embeds.shape[0]
+
+        if prompt_embeds is None:
+            # textual inversion: process multi-vector tokens if necessary
+            if isinstance(self, TextualInversionLoaderMixin):
+                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
+
+            text_inputs = self.tokenizer(
+                prompt,
+                padding="max_length",
+                max_length=self.tokenizer.model_max_length,
+                truncation=True,
+                return_tensors="pt",
+            )
+            text_input_ids = text_inputs.input_ids
+            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
+
+            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
+                text_input_ids, untruncated_ids
+            ):
+                removed_text = self.tokenizer.batch_decode(
+                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
+                )
+                logger.warning(
+                    "The following part of your input was truncated because CLIP can only handle sequences up to"
+                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
+                )
+
+            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+                attention_mask = text_inputs.attention_mask.to(device)
+            else:
+                attention_mask = None
+
+            if clip_skip is None:
+                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
+                prompt_embeds = prompt_embeds[0]
+            else:
+                prompt_embeds = self.text_encoder(
+                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
+                )
+                # Access the `hidden_states` first, that contains a tuple of
+                # all the hidden states from the encoder layers. Then index into
+                # the tuple to access the hidden states from the desired layer.
+                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
+                # We also need to apply the final LayerNorm here to not mess with the
+                # representations. The `last_hidden_states` that we typically use for
+                # obtaining the final prompt representations passes through the LayerNorm
+                # layer.
+                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
+
+        if self.text_encoder is not None:
+            prompt_embeds_dtype = self.text_encoder.dtype
+        elif self.unet is not None:
+            prompt_embeds_dtype = self.unet.dtype
+        else:
+            prompt_embeds_dtype = prompt_embeds.dtype
+
+        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
+
+        bs_embed, seq_len, _ = prompt_embeds.shape
+        # duplicate text embeddings for each generation per prompt, using mps friendly method
+        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
+        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
+
+        # get unconditional embeddings for classifier free guidance
+        if do_classifier_free_guidance and negative_prompt_embeds is None:
+            uncond_tokens: List[str]
+            if negative_prompt is None:
+                uncond_tokens = [""] * batch_size
+            elif prompt is not None and type(prompt) is not type(negative_prompt):
+                raise TypeError(
+                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
+                    f" {type(prompt)}."
+                )
+            elif isinstance(negative_prompt, str):
+                uncond_tokens = [negative_prompt]
+            elif batch_size != len(negative_prompt):
+                raise ValueError(
+                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
+                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
+                    " the batch size of `prompt`."
+                )
+            else:
+                uncond_tokens = negative_prompt
+
+            # textual inversion: process multi-vector tokens if necessary
+            if isinstance(self, TextualInversionLoaderMixin):
+                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
+
+            max_length = prompt_embeds.shape[1]
+            uncond_input = self.tokenizer(
+                uncond_tokens,
+                padding="max_length",
+                max_length=max_length,
+                truncation=True,
+                return_tensors="pt",
+            )
+
+            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
+                attention_mask = uncond_input.attention_mask.to(device)
+            else:
+                attention_mask = None
+
+            negative_prompt_embeds = self.text_encoder(
+                uncond_input.input_ids.to(device),
+                attention_mask=attention_mask,
+            )
+            negative_prompt_embeds = negative_prompt_embeds[0]
+
+        if do_classifier_free_guidance:
+            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
+            seq_len = negative_prompt_embeds.shape[1]
+
+            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
+
+            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
+            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
+
+        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
+            # Retrieve the original scale by scaling back the LoRA layers
+            unscale_lora_layers(self.text_encoder, lora_scale)
+
+        return prompt_embeds, negative_prompt_embeds
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
+    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
+        dtype = next(self.image_encoder.parameters()).dtype
+
+        if not isinstance(image, torch.Tensor):
+            image = self.feature_extractor(image, return_tensors="pt").pixel_values
+
+        image = image.to(device=device, dtype=dtype)
+        if output_hidden_states:
+            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
+            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
+            uncond_image_enc_hidden_states = self.image_encoder(
+                torch.zeros_like(image), output_hidden_states=True
+            ).hidden_states[-2]
+            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
+                num_images_per_prompt, dim=0
+            )
+            return image_enc_hidden_states, uncond_image_enc_hidden_states
+        else:
+            image_embeds = self.image_encoder(image).image_embeds
+            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
+            uncond_image_embeds = torch.zeros_like(image_embeds)
+
+            return image_embeds, uncond_image_embeds
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
+    def prepare_ip_adapter_image_embeds(
+        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
+    ):
+        if ip_adapter_image_embeds is None:
+            if not isinstance(ip_adapter_image, list):
+                ip_adapter_image = [ip_adapter_image]
+
+            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
+                raise ValueError(
+                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
+                )
+
+            image_embeds = []
+            for single_ip_adapter_image, image_proj_layer in zip(
+                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
+            ):
+                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
+                single_image_embeds, single_negative_image_embeds = self.encode_image(
+                    single_ip_adapter_image, device, 1, output_hidden_state
+                )
+                single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
+                single_negative_image_embeds = torch.stack(
+                    [single_negative_image_embeds] * num_images_per_prompt, dim=0
+                )
+
+                if do_classifier_free_guidance:
+                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
+                    single_image_embeds = single_image_embeds.to(device)
+
+                image_embeds.append(single_image_embeds)
+        else:
+            repeat_dims = [1]
+            image_embeds = []
+            for single_image_embeds in ip_adapter_image_embeds:
+                if do_classifier_free_guidance:
+                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
+                    single_image_embeds = single_image_embeds.repeat(
+                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
+                    )
+                    single_negative_image_embeds = single_negative_image_embeds.repeat(
+                        num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
+                    )
+                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
+                else:
+                    single_image_embeds = single_image_embeds.repeat(
+                        num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
+                    )
+                image_embeds.append(single_image_embeds)
+
+        return image_embeds
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
+    def run_safety_checker(self, image, device, dtype):
+        if self.safety_checker is None:
+            has_nsfw_concept = None
+        else:
+            if torch.is_tensor(image):
+                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
+            else:
+                feature_extractor_input = self.image_processor.numpy_to_pil(image)
+            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
+            image, has_nsfw_concept = self.safety_checker(
+                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
+            )
+        return image, has_nsfw_concept
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
+    def decode_latents(self, latents):
+        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
+        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
+
+        latents = 1 / self.vae.config.scaling_factor * latents
+        image = self.vae.decode(latents, return_dict=False)[0]
+        image = (image / 2 + 0.5).clamp(0, 1)
+        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
+        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
+        return image
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
+    def prepare_extra_step_kwargs(self, generator, eta):
+        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
+        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
+        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
+        # and should be between [0, 1]
+
+        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
+        extra_step_kwargs = {}
+        if accepts_eta:
+            extra_step_kwargs["eta"] = eta
+
+        # check if the scheduler accepts generator
+        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
+        if accepts_generator:
+            extra_step_kwargs["generator"] = generator
+        return extra_step_kwargs
+
+    def check_inputs(
+        self,
+        prompt,
+        image,
+        callback_steps,
+        negative_prompt=None,
+        prompt_embeds=None,
+        negative_prompt_embeds=None,
+        ip_adapter_image=None,
+        ip_adapter_image_embeds=None,
+        controlnet_conditioning_scale=1.0,
+        control_guidance_start=0.0,
+        control_guidance_end=1.0,
+        callback_on_step_end_tensor_inputs=None,
+    ):
+        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
+            raise ValueError(
+                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
+                f" {type(callback_steps)}."
+            )
+
+        if callback_on_step_end_tensor_inputs is not None and not all(
+            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
+        ):
+            raise ValueError(
+                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
+            )
+
+        if prompt is not None and prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
+                " only forward one of the two."
+            )
+        elif prompt is None and prompt_embeds is None:
+            raise ValueError(
+                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
+            )
+        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
+            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
+
+        if negative_prompt is not None and negative_prompt_embeds is not None:
+            raise ValueError(
+                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
+                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
+            )
+
+        if prompt_embeds is not None and negative_prompt_embeds is not None:
+            if prompt_embeds.shape != negative_prompt_embeds.shape:
+                raise ValueError(
+                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
+                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
+                    f" {negative_prompt_embeds.shape}."
+                )
+
+        # `prompt` needs more sophisticated handling when there are multiple
+        # conditionings.
+        if isinstance(self.controlnet, MultiControlNetModel):
+            if isinstance(prompt, list):
+                logger.warning(
+                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
+                    " prompts. The conditionings will be fixed across the prompts."
+                )
+
+        # Check `image`
+        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
+            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
+        )
+        if (
+            isinstance(self.controlnet, ControlNetModel)
+            or is_compiled
+            and isinstance(self.controlnet._orig_mod, ControlNetModel)
+        ):
+            self.check_image(image, prompt, prompt_embeds)
+        elif (
+            isinstance(self.controlnet, MultiControlNetModel)
+            or is_compiled
+            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
+        ):
+            if not isinstance(image, list):
+                raise TypeError("For multiple controlnets: `image` must be type `list`")
+
+            # When `image` is a nested list:
+            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
+            elif any(isinstance(i, list) for i in image):
+                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
+            elif len(image) != len(self.controlnet.nets):
+                raise ValueError(
+                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
+                )
+
+            for image_ in image:
+                self.check_image(image_, prompt, prompt_embeds)
+        else:
+            assert False
+
+        # Check `controlnet_conditioning_scale`
+        if (
+            isinstance(self.controlnet, ControlNetModel)
+            or is_compiled
+            and isinstance(self.controlnet._orig_mod, ControlNetModel)
+        ):
+            if not isinstance(controlnet_conditioning_scale, float):
+                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
+        elif (
+            isinstance(self.controlnet, MultiControlNetModel)
+            or is_compiled
+            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
+        ):
+            if isinstance(controlnet_conditioning_scale, list):
+                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
+                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
+            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
+                self.controlnet.nets
+            ):
+                raise ValueError(
+                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
+                    " the same length as the number of controlnets"
+                )
+        else:
+            assert False
+
+        if len(control_guidance_start) != len(control_guidance_end):
+            raise ValueError(
+                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
+            )
+
+        if isinstance(self.controlnet, MultiControlNetModel):
+            if len(control_guidance_start) != len(self.controlnet.nets):
+                raise ValueError(
+                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
+                )
+
+        for start, end in zip(control_guidance_start, control_guidance_end):
+            if start >= end:
+                raise ValueError(
+                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
+                )
+            if start < 0.0:
+                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
+            if end > 1.0:
+                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
+
+        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
+            raise ValueError(
+                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
+            )
+
+        if ip_adapter_image_embeds is not None:
+            if not isinstance(ip_adapter_image_embeds, list):
+                raise ValueError(
+                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
+                )
+            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
+                raise ValueError(
+                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
+                )
+
+    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
+    def check_image(self, image, prompt, prompt_embeds):
+        image_is_pil = isinstance(image, PIL.Image.Image)
+        image_is_tensor = isinstance(image, torch.Tensor)
+        image_is_np = isinstance(image, np.ndarray)
+        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
+        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
+        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
+
+        if (
+            not image_is_pil
+            and not image_is_tensor
+            and not image_is_np
+            and not image_is_pil_list
+            and not image_is_tensor_list
+            and not image_is_np_list
+        ):
+            raise TypeError(
+                f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
+            )
+
+        if image_is_pil:
+            image_batch_size = 1
+        else:
+            image_batch_size = len(image)
+
+        if prompt is not None and isinstance(prompt, str):
+            prompt_batch_size = 1
+        elif prompt is not None and isinstance(prompt, list):
+            prompt_batch_size = len(prompt)
+        elif prompt_embeds is not None:
+            prompt_batch_size = prompt_embeds.shape[0]
+
+        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
+            raise ValueError(
+                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
+            )
+
+    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
+    def prepare_control_image(
+        self,
+        image,
+        width,
+        height,
+        batch_size,
+        num_images_per_prompt,
+        device,
+        dtype,
+        do_classifier_free_guidance=False,
+        guess_mode=False,
+    ):
+        image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
+        image_batch_size = image.shape[0]
+
+        if image_batch_size == 1:
+            repeat_by = batch_size
+        else:
+            # image batch size is the same as prompt batch size
+            repeat_by = num_images_per_prompt
+
+        image = image.repeat_interleave(repeat_by, dim=0)
+
+        image = image.to(device=device, dtype=dtype)
+
+        if do_classifier_free_guidance and not guess_mode:
+            image = torch.cat([image] * 2)
+
+        return image
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
+    def get_timesteps(self, num_inference_steps, strength, device):
+        # get the original timestep using init_timestep
+        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
+
+        t_start = max(num_inference_steps - init_timestep, 0)
+        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
+        if hasattr(self.scheduler, "set_begin_index"):
+            self.scheduler.set_begin_index(t_start * self.scheduler.order)
+
+        return timesteps, num_inference_steps - t_start
+
+    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
+    def prepare_latents(
+        self, image, timestep, batch_size, num_images_per_prompt, dtype, device, repeat_noise, generator=None
+    ):
+        if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
+            raise ValueError(
+                f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
+            )
+
+        image = image.to(device=device, dtype=dtype)
+
+        batch_size = batch_size * num_images_per_prompt
+
+        if image.shape[1] == 4:
+            init_latents = image
+
+        else:
+            if isinstance(generator, list) and len(generator) != batch_size:
+                raise ValueError(
+                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
+                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
+                )
+
+            elif isinstance(generator, list):
+                init_latents = [
+                    retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
+                    for i in range(batch_size)
+                ]
+                init_latents = torch.cat(init_latents, dim=0)
+            else:
+                init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
+
+            init_latents = self.vae.config.scaling_factor * init_latents
+
+        if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
+            # expand init_latents for batch_size
+            deprecation_message = (
+                f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
+                " images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
+                " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
+                " your script to pass as many initial images as text prompts to suppress this warning."
+            )
+            deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
+            additional_image_per_prompt = batch_size // init_latents.shape[0]
+            init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
+        elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
+            raise ValueError(
+                f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
+            )
+        else:
+            init_latents = torch.cat([init_latents], dim=0)
+
+        shape = init_latents.shape
+        if repeat_noise:
+            noise = randn_tensor((1, *shape[1:]), generator=generator, device=device, dtype=dtype)
+            one_tuple = (1,) * (len(shape) - 1)
+            noise = noise.repeat(batch_size, *one_tuple)
+        else:
+            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
+
+        # get latents
+        init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
+        latents = init_latents
+
+        return latents
+
+    @property
+    def guidance_scale(self):
+        return self._guidance_scale
+
+    @property
+    def clip_skip(self):
+        return self._clip_skip
+
+    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
+    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
+    # corresponds to doing no classifier free guidance.
+    @property
+    def do_classifier_free_guidance(self):
+        return self._guidance_scale > 1
+
+    @property
+    def cross_attention_kwargs(self):
+        return self._cross_attention_kwargs
+
+    @property
+    def num_timesteps(self):
+        return self._num_timesteps
+
+    @torch.no_grad()
+    def __call__(
+        self,
+        prompt: Union[str, List[str]] = None,
+        frames: Union[List[np.ndarray], torch.FloatTensor] = None,
+        control_frames: Union[List[np.ndarray], torch.FloatTensor] = None,
+        height: Optional[int] = None,
+        width: Optional[int] = None,
+        strength: float = 0.8,
+        num_inference_steps: int = 50,
+        guidance_scale: float = 7.5,
+        negative_prompt: Optional[Union[str, List[str]]] = None,
+        num_images_per_prompt: Optional[int] = 1,
+        eta: float = 0.0,
+        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
+        latents: Optional[torch.FloatTensor] = None,
+        prompt_embeds: Optional[torch.FloatTensor] = None,
+        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
+        ip_adapter_image: Optional[PipelineImageInput] = None,
+        ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
+        output_type: Optional[str] = "pil",
+        return_dict: bool = True,
+        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
+        controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
+        guess_mode: bool = False,
+        control_guidance_start: Union[float, List[float]] = 0.0,
+        control_guidance_end: Union[float, List[float]] = 1.0,
+        clip_skip: Optional[int] = None,
+        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
+        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
+        end_opt_step=15,
+        num_intraattn_steps=1,
+        step_interattn_end=350,
+        **kwargs,
+    ):
+        r"""
+        The call function to the pipeline for generation.
+
+        Args:
+            prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
+            frames (`List[np.ndarray]` or `torch.FloatTensor`): The input images to be used as the starting point for the image generation process.
+            control_frames (`List[np.ndarray]` or `torch.FloatTensor`): The ControlNet input images condition to provide guidance to the `unet` for generation.
+            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
+                The height in pixels of the generated image.
+            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
+                The width in pixels of the generated image.
+            strength (`float`, *optional*, defaults to 0.8):
+                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
+                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
+                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
+                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
+                essentially ignores `image`.
+            num_inference_steps (`int`, *optional*, defaults to 50):
+                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
+                expense of slower inference.
+            guidance_scale (`float`, *optional*, defaults to 7.5):
+                A higher guidance scale value encourages the model to generate images closely linked to the text
+                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
+            negative_prompt (`str` or `List[str]`, *optional*):
+                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
+                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
+            num_images_per_prompt (`int`, *optional*, defaults to 1):
+                The number of images to generate per prompt.
+            eta (`float`, *optional*, defaults to 0.0):
+                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
+                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
+            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
+                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
+                generation deterministic.
+            latents (`torch.FloatTensor`, *optional*):
+                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
+                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
+                tensor is generated by sampling using the supplied random `generator`.
+            prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
+                provided, text embeddings are generated from the `prompt` input argument.
+            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
+                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
+                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
+            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
+            ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
+                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
+                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
+                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
+                provided, embeddings are computed from the `ip_adapter_image` input argument.
+            output_type (`str`, *optional*, defaults to `"pil"`):
+                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
+            return_dict (`bool`, *optional*, defaults to `True`):
+                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
+                plain tuple.
+            cross_attention_kwargs (`dict`, *optional*):
+                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
+                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
+            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
+                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
+                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
+                the corresponding scale as a list.
+            guess_mode (`bool`, *optional*, defaults to `False`):
+                The ControlNet encoder tries to recognize the content of the input image even if you remove all
+                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
+            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
+                The percentage of total steps at which the ControlNet starts applying.
+            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
+                The percentage of total steps at which the ControlNet stops applying.
+            clip_skip (`int`, *optional*):
+                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
+                the output of the pre-final layer will be used for computing the prompt embeddings.
+            callback_on_step_end (`Callable`, *optional*):
+                A function that calls at the end of each denoising steps during the inference. The function is called
+                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
+                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
+                `callback_on_step_end_tensor_inputs`.
+            callback_on_step_end_tensor_inputs (`List`, *optional*):
+                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
+                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
+                `._callback_tensor_inputs` attribute of your pipeline class.
+            end_opt_step:
+                The feature optimization is activated from strength * num_inference_step to end_opt_step.
+            num_intraattn_steps:
+                Apply num_interattn_steps steps of spatial-guided attention.
+            step_interattn_end:
+                Apply temporal-guided attention in [step_interattn_end, 1000] steps
+
+        Examples:
+
+        Returns:
+            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
+                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
+                otherwise a `tuple` is returned where the first element is a list with the generated images and the
+                second element is a list of `bool`s indicating whether the corresponding generated image contains
+                "not-safe-for-work" (nsfw) content.
+        """
+
+        callback = kwargs.pop("callback", None)
+        callback_steps = kwargs.pop("callback_steps", None)
+
+        if callback is not None:
+            deprecate(
+                "callback",
+                "1.0.0",
+                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
+            )
+        if callback_steps is not None:
+            deprecate(
+                "callback_steps",
+                "1.0.0",
+                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
+            )
+
+        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
+
+        # align format for control guidance
+        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
+            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
+        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
+            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
+        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
+            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
+            control_guidance_start, control_guidance_end = (
+                mult * [control_guidance_start],
+                mult * [control_guidance_end],
+            )
+
+        # 1. Check inputs. Raise error if not correct
+        self.check_inputs(
+            prompt,
+            control_frames[0],
+            callback_steps,
+            negative_prompt,
+            prompt_embeds,
+            negative_prompt_embeds,
+            ip_adapter_image,
+            ip_adapter_image_embeds,
+            controlnet_conditioning_scale,
+            control_guidance_start,
+            control_guidance_end,
+            callback_on_step_end_tensor_inputs,
+        )
+
+        self._guidance_scale = guidance_scale
+        self._clip_skip = clip_skip
+        self._cross_attention_kwargs = cross_attention_kwargs
+
+        # 2. Define call parameters
+        batch_size = len(frames)
+
+        device = self._execution_device
+
+        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
+            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
+
+        global_pool_conditions = (
+            controlnet.config.global_pool_conditions
+            if isinstance(controlnet, ControlNetModel)
+            else controlnet.nets[0].config.global_pool_conditions
+        )
+        guess_mode = guess_mode or global_pool_conditions
+
+        # 3. Encode input prompt
+        text_encoder_lora_scale = (
+            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
+        )
+        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
+            prompt,
+            device,
+            num_images_per_prompt,
+            self.do_classifier_free_guidance,
+            negative_prompt,
+            prompt_embeds=prompt_embeds,
+            negative_prompt_embeds=negative_prompt_embeds,
+            lora_scale=text_encoder_lora_scale,
+            clip_skip=self.clip_skip,
+        )
+        prompt_embeds = prompt_embeds.repeat(batch_size, 1, 1)
+        negative_prompt_embeds = negative_prompt_embeds.repeat(batch_size, 1, 1)
+
+        # For classifier free guidance, we need to do two forward passes.
+        # Here we concatenate the unconditional and text embeddings into a single batch
+        # to avoid doing two forward passes
+        if self.do_classifier_free_guidance:
+            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
+
+        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
+            image_embeds = self.prepare_ip_adapter_image_embeds(
+                ip_adapter_image,
+                ip_adapter_image_embeds,
+                device,
+                batch_size * num_images_per_prompt,
+                self.do_classifier_free_guidance,
+            )
+
+        # 4. Prepare image
+        imgs_np = []
+        for frame in frames:
+            if isinstance(frame, PIL.Image.Image):
+                imgs_np.append(np.asarray(frame))
+            else:
+                # np.ndarray
+                imgs_np.append(frame)
+        images_pt = self.image_processor.preprocess(frames).to(dtype=torch.float32)
+
+        # 5. Prepare controlnet_conditioning_image
+        if isinstance(controlnet, ControlNetModel):
+            control_image = self.prepare_control_image(
+                image=control_frames,
+                width=width,
+                height=height,
+                batch_size=batch_size * num_images_per_prompt,
+                num_images_per_prompt=num_images_per_prompt,
+                device=device,
+                dtype=controlnet.dtype,
+                do_classifier_free_guidance=self.do_classifier_free_guidance,
+                guess_mode=guess_mode,
+            )
+        elif isinstance(controlnet, MultiControlNetModel):
+            control_images = []
+
+            for control_image_ in control_frames:
+                control_image_ = self.prepare_control_image(
+                    image=control_image_,
+                    width=width,
+                    height=height,
+                    batch_size=batch_size * num_images_per_prompt,
+                    num_images_per_prompt=num_images_per_prompt,
+                    device=device,
+                    dtype=controlnet.dtype,
+                    do_classifier_free_guidance=self.do_classifier_free_guidance,
+                    guess_mode=guess_mode,
+                )
+
+                control_images.append(control_image_)
+
+            control_image = control_images
+        else:
+            assert False
+
+        self.flow_model.to(device)
+
+        flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(self.flow_model, imgs_np)
+        correlation_matrix = get_intraframe_paras(self, images_pt, self.frescoProc, prompt_embeds, generator)
+
+        """
+        Flexible settings for attention:
+        * Turn off FRESCO-guided attention: frescoProc.controller.disable_controller()
+        Then you can turn on one specific attention submodule
+        * Turn on Cross-frame attention: frescoProc.controller.enable_cfattn(attn_mask)
+        * Turn on Spatial-guided attention: frescoProc.controller.enable_intraattn()
+        * Turn on Temporal-guided attention: frescoProc.controller.enable_interattn(interattn_paras)
+
+        Flexible settings for optimization:
+        * Turn off Spatial-guided optimization: set optimize_temporal = False in apply_FRESCO_opt()
+        * Turn off Temporal-guided optimization: set correlation_matrix = [] in apply_FRESCO_opt()
+        * Turn off FRESCO-guided optimization: disable_FRESCO_opt(pipe)
+
+        Flexible settings for background smoothing:
+        * Turn off background smoothing: set saliency = None in apply_FRESCO_opt()
+        """
+
+        self.frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask)
+        self.scheduler.set_timesteps(num_inference_steps, device=device)
+        timesteps = self.scheduler.timesteps
+        apply_FRESCO_opt(
+            self,
+            steps=timesteps[:end_opt_step],
+            flows=flows,
+            occs=occs,
+            correlation_matrix=correlation_matrix,
+            saliency=None,
+            optimize_temporal=True,
+        )
+
+        clear_cache()
+
+        # 5. Prepare timesteps
+        self.scheduler.set_timesteps(num_inference_steps, device=device)
+        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
+        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
+        self._num_timesteps = len(timesteps)
+
+        # 6. Prepare latent variables
+        latents = self.prepare_latents(
+            images_pt,
+            latent_timestep,
+            batch_size,
+            num_images_per_prompt,
+            prompt_embeds.dtype,
+            device,
+            generator=generator,
+            repeat_noise=True,
+        )
+
+        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
+        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
+
+        # 7.1 Add image embeds for IP-Adapter
+        added_cond_kwargs = (
+            {"image_embeds": image_embeds}
+            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
+            else None
+        )
+
+        # 7.2 Create tensor stating which controlnets to keep
+        controlnet_keep = []
+        for i in range(len(timesteps)):
+            keeps = [
+                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
+                for s, e in zip(control_guidance_start, control_guidance_end)
+            ]
+            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
+
+        # 8. Denoising loop
+        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
+        with self.progress_bar(total=num_inference_steps) as progress_bar:
+            for i, t in enumerate(timesteps):
+                if i >= num_intraattn_steps:
+                    self.frescoProc.controller.disable_intraattn()
+                if t < step_interattn_end:
+                    self.frescoProc.controller.disable_interattn()
+
+                # expand the latents if we are doing classifier free guidance
+                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
+                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
+
+                # controlnet(s) inference
+                if guess_mode and self.do_classifier_free_guidance:
+                    # Infer ControlNet only for the conditional batch.
+                    control_model_input = latents
+                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
+                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
+                else:
+                    control_model_input = latent_model_input
+                    controlnet_prompt_embeds = prompt_embeds
+
+                if isinstance(controlnet_keep[i], list):
+                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
+                else:
+                    controlnet_cond_scale = controlnet_conditioning_scale
+                    if isinstance(controlnet_cond_scale, list):
+                        controlnet_cond_scale = controlnet_cond_scale[0]
+                    cond_scale = controlnet_cond_scale * controlnet_keep[i]
+
+                down_block_res_samples, mid_block_res_sample = self.controlnet(
+                    control_model_input,
+                    t,
+                    encoder_hidden_states=controlnet_prompt_embeds,
+                    controlnet_cond=control_image,
+                    conditioning_scale=cond_scale,
+                    guess_mode=guess_mode,
+                    return_dict=False,
+                )
+
+                if guess_mode and self.do_classifier_free_guidance:
+                    # Infered ControlNet only for the conditional batch.
+                    # To apply the output of ControlNet to both the unconditional and conditional batches,
+                    # add 0 to the unconditional batch to keep it unchanged.
+                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
+                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
+
+                # predict the noise residual
+                noise_pred = self.unet(
+                    latent_model_input,
+                    t,
+                    encoder_hidden_states=prompt_embeds,
+                    cross_attention_kwargs=self.cross_attention_kwargs,
+                    down_block_additional_residuals=down_block_res_samples,
+                    mid_block_additional_residual=mid_block_res_sample,
+                    added_cond_kwargs=added_cond_kwargs,
+                    return_dict=False,
+                )[0]
+
+                # perform guidance
+                if self.do_classifier_free_guidance:
+                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
+                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
+
+                # compute the previous noisy sample x_t -> x_t-1
+                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
+
+                if callback_on_step_end is not None:
+                    callback_kwargs = {}
+                    for k in callback_on_step_end_tensor_inputs:
+                        callback_kwargs[k] = locals()[k]
+                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
+
+                    latents = callback_outputs.pop("latents", latents)
+                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
+                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
+
+                # call the callback, if provided
+                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
+                    progress_bar.update()
+                    if callback is not None and i % callback_steps == 0:
+                        step_idx = i // getattr(self.scheduler, "order", 1)
+                        callback(step_idx, t, latents)
+
+        # If we do sequential model offloading, let's offload unet and controlnet
+        # manually for max memory savings
+        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
+            self.unet.to("cpu")
+            self.controlnet.to("cpu")
+            torch.cuda.empty_cache()
+
+        if not output_type == "latent":
+            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
+                0
+            ]
+            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
+        else:
+            image = latents
+            has_nsfw_concept = None
+
+        if has_nsfw_concept is None:
+            do_denormalize = [True] * image.shape[0]
+        else:
+            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
+
+        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
+
+        # Offload all models
+        self.maybe_free_model_hooks()
+
+        if not return_dict:
+            return (image, has_nsfw_concept)
+
+        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)