| import glob |
| import os |
| from typing import Dict, List, Union |
|
|
| import torch |
|
|
| from diffusers.utils import is_safetensors_available |
|
|
|
|
| if is_safetensors_available(): |
| import safetensors.torch |
|
|
| from huggingface_hub import snapshot_download |
|
|
| from diffusers import DiffusionPipeline, __version__ |
| from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME |
| from diffusers.utils import CONFIG_NAME, DIFFUSERS_CACHE, ONNX_WEIGHTS_NAME, WEIGHTS_NAME |
|
|
|
|
| class CheckpointMergerPipeline(DiffusionPipeline): |
| """ |
| A class that that supports merging diffusion models based on the discussion here: |
| https://github.com/huggingface/diffusers/issues/877 |
| |
| Example usage:- |
| |
| pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py") |
| |
| merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True) |
| |
| merged_pipe.to('cuda') |
| |
| prompt = "An astronaut riding a unicycle on Mars" |
| |
| results = merged_pipe(prompt) |
| |
| ## For more details, see the docstring for the merge method. |
| |
| """ |
|
|
| def __init__(self): |
| self.register_to_config() |
| super().__init__() |
|
|
| def _compare_model_configs(self, dict0, dict1): |
| if dict0 == dict1: |
| return True |
| else: |
| config0, meta_keys0 = self._remove_meta_keys(dict0) |
| config1, meta_keys1 = self._remove_meta_keys(dict1) |
| if config0 == config1: |
| print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.") |
| return True |
| return False |
|
|
| def _remove_meta_keys(self, config_dict: Dict): |
| meta_keys = [] |
| temp_dict = config_dict.copy() |
| for key in config_dict.keys(): |
| if key.startswith("_"): |
| temp_dict.pop(key) |
| meta_keys.append(key) |
| return (temp_dict, meta_keys) |
|
|
| @torch.no_grad() |
| def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs): |
| """ |
| Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed |
| in the argument 'pretrained_model_name_or_path_list' as a list. |
| |
| Parameters: |
| ----------- |
| pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format. |
| |
| **kwargs: |
| Supports all the default DiffusionPipeline.get_config_dict kwargs viz.. |
| |
| cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map. |
| |
| alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha |
| would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2 |
| |
| interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_diff" and None. |
| Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_diff" is supported. |
| |
| force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False. |
| |
| """ |
| |
| cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
| resume_download = kwargs.pop("resume_download", False) |
| force_download = kwargs.pop("force_download", False) |
| proxies = kwargs.pop("proxies", None) |
| local_files_only = kwargs.pop("local_files_only", False) |
| use_auth_token = kwargs.pop("use_auth_token", None) |
| revision = kwargs.pop("revision", None) |
| torch_dtype = kwargs.pop("torch_dtype", None) |
| device_map = kwargs.pop("device_map", None) |
|
|
| alpha = kwargs.pop("alpha", 0.5) |
| interp = kwargs.pop("interp", None) |
|
|
| print("Received list", pretrained_model_name_or_path_list) |
| print(f"Combining with alpha={alpha}, interpolation mode={interp}") |
|
|
| checkpoint_count = len(pretrained_model_name_or_path_list) |
| |
| force = kwargs.pop("force", False) |
|
|
| |
| if checkpoint_count > 3 or checkpoint_count < 2: |
| raise ValueError( |
| "Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being" |
| " passed." |
| ) |
|
|
| print("Received the right number of checkpoints") |
| |
| |
|
|
| |
| |
| config_dicts = [] |
| for pretrained_model_name_or_path in pretrained_model_name_or_path_list: |
| config_dict = DiffusionPipeline.load_config( |
| pretrained_model_name_or_path, |
| cache_dir=cache_dir, |
| resume_download=resume_download, |
| force_download=force_download, |
| proxies=proxies, |
| local_files_only=local_files_only, |
| use_auth_token=use_auth_token, |
| revision=revision, |
| ) |
| config_dicts.append(config_dict) |
|
|
| comparison_result = True |
| for idx in range(1, len(config_dicts)): |
| comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx]) |
| if not force and comparison_result is False: |
| raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.") |
| print(config_dicts[0], config_dicts[1]) |
| print("Compatible model_index.json files found") |
| |
| cached_folders = [] |
| for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts): |
| folder_names = [k for k in config_dict.keys() if not k.startswith("_")] |
| allow_patterns = [os.path.join(k, "*") for k in folder_names] |
| allow_patterns += [ |
| WEIGHTS_NAME, |
| SCHEDULER_CONFIG_NAME, |
| CONFIG_NAME, |
| ONNX_WEIGHTS_NAME, |
| DiffusionPipeline.config_name, |
| ] |
| requested_pipeline_class = config_dict.get("_class_name") |
| user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class} |
|
|
| cached_folder = ( |
| pretrained_model_name_or_path |
| if os.path.isdir(pretrained_model_name_or_path) |
| else snapshot_download( |
| pretrained_model_name_or_path, |
| cache_dir=cache_dir, |
| resume_download=resume_download, |
| proxies=proxies, |
| local_files_only=local_files_only, |
| use_auth_token=use_auth_token, |
| revision=revision, |
| allow_patterns=allow_patterns, |
| user_agent=user_agent, |
| ) |
| ) |
| print("Cached Folder", cached_folder) |
| cached_folders.append(cached_folder) |
|
|
| |
| |
| final_pipe = DiffusionPipeline.from_pretrained( |
| cached_folders[0], torch_dtype=torch_dtype, device_map=device_map |
| ) |
| final_pipe.to(self.device) |
|
|
| checkpoint_path_2 = None |
| if len(cached_folders) > 2: |
| checkpoint_path_2 = os.path.join(cached_folders[2]) |
|
|
| if interp == "sigmoid": |
| theta_func = CheckpointMergerPipeline.sigmoid |
| elif interp == "inv_sigmoid": |
| theta_func = CheckpointMergerPipeline.inv_sigmoid |
| elif interp == "add_diff": |
| theta_func = CheckpointMergerPipeline.add_difference |
| else: |
| theta_func = CheckpointMergerPipeline.weighted_sum |
|
|
| |
| for attr in final_pipe.config.keys(): |
| if not attr.startswith("_"): |
| checkpoint_path_1 = os.path.join(cached_folders[1], attr) |
| if os.path.exists(checkpoint_path_1): |
| files = [ |
| *glob.glob(os.path.join(checkpoint_path_1, "*.safetensors")), |
| *glob.glob(os.path.join(checkpoint_path_1, "*.bin")), |
| ] |
| checkpoint_path_1 = files[0] if len(files) > 0 else None |
| if len(cached_folders) < 3: |
| checkpoint_path_2 = None |
| else: |
| checkpoint_path_2 = os.path.join(cached_folders[2], attr) |
| if os.path.exists(checkpoint_path_2): |
| files = [ |
| *glob.glob(os.path.join(checkpoint_path_2, "*.safetensors")), |
| *glob.glob(os.path.join(checkpoint_path_2, "*.bin")), |
| ] |
| checkpoint_path_2 = files[0] if len(files) > 0 else None |
| |
| |
| if checkpoint_path_1 is None and checkpoint_path_2 is None: |
| print(f"Skipping {attr}: not present in 2nd or 3d model") |
| continue |
| try: |
| module = getattr(final_pipe, attr) |
| if isinstance(module, bool): |
| continue |
| theta_0 = getattr(module, "state_dict") |
| theta_0 = theta_0() |
|
|
| update_theta_0 = getattr(module, "load_state_dict") |
| theta_1 = ( |
| safetensors.torch.load_file(checkpoint_path_1) |
| if (is_safetensors_available() and checkpoint_path_1.endswith(".safetensors")) |
| else torch.load(checkpoint_path_1, map_location="cpu") |
| ) |
| theta_2 = None |
| if checkpoint_path_2: |
| theta_2 = ( |
| safetensors.torch.load_file(checkpoint_path_2) |
| if (is_safetensors_available() and checkpoint_path_2.endswith(".safetensors")) |
| else torch.load(checkpoint_path_2, map_location="cpu") |
| ) |
|
|
| if not theta_0.keys() == theta_1.keys(): |
| print(f"Skipping {attr}: key mismatch") |
| continue |
| if theta_2 and not theta_1.keys() == theta_2.keys(): |
| print(f"Skipping {attr}:y mismatch") |
| except Exception as e: |
| print(f"Skipping {attr} do to an unexpected error: {str(e)}") |
| continue |
| print(f"MERGING {attr}") |
|
|
| for key in theta_0.keys(): |
| if theta_2: |
| theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha) |
| else: |
| theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha) |
|
|
| del theta_1 |
| del theta_2 |
| update_theta_0(theta_0) |
|
|
| del theta_0 |
| return final_pipe |
|
|
| @staticmethod |
| def weighted_sum(theta0, theta1, theta2, alpha): |
| return ((1 - alpha) * theta0) + (alpha * theta1) |
|
|
| |
| @staticmethod |
| def sigmoid(theta0, theta1, theta2, alpha): |
| alpha = alpha * alpha * (3 - (2 * alpha)) |
| return theta0 + ((theta1 - theta0) * alpha) |
|
|
| |
| @staticmethod |
| def inv_sigmoid(theta0, theta1, theta2, alpha): |
| import math |
|
|
| alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0) |
| return theta0 + ((theta1 - theta0) * alpha) |
|
|
| @staticmethod |
| def add_difference(theta0, theta1, theta2, alpha): |
| return theta0 + (theta1 - theta2) * (1.0 - alpha) |
|
|