image
imagewidth (px) 4
512
| latex
stringlengths 1
188
| sample_id
stringlengths 16
16
| split_tag
stringclasses 1
value | data_type
stringclasses 1
value |
---|---|---|---|---|
V(\tilde{\beta})
|
47f7bccab32dc3b3
|
train
|
human
|
|
GL(V)\times S_{n}
|
1fe782f3cfdb576c
|
train
|
human
|
|
\tilde{f}:X\rightarrow M_{f}
|
3e223198b4dd0d3e
|
train
|
human
|
|
\{g_{1},g_{2},g_{3}\}
|
df7b0ba66278feaa
|
train
|
human
|
|
\frac{418^{163}}{(197^{4}\cdot10)}
|
1f8c6fc99965fda9
|
train
|
human
|
|
g(z)=\frac{1}{f(z)-\mu}
|
ddbb048e0072b06d
|
train
|
human
|
|
(\begin{matrix}-1&-1\\ 1&0\end{matrix})
|
5529a28442a3dc78
|
train
|
human
|
|
(\frac{6}{194})^{\frac{\frac{397}{5}}{86}}
|
b1681d8e02998814
|
train
|
human
|
|
\Xi_{q}^{z}
|
19d93323adcbc41f
|
train
|
human
|
|
(\begin{matrix}n\\ k\end{matrix})
|
1f44abbf8c209ae9
|
train
|
human
|
|
((\frac{5}{17})^{1})^{(270^{2}-8)}
|
481966bfb89b0170
|
train
|
human
|
|
\int vds
|
605e2ab6ec9cbd5d
|
train
|
human
|
|
u_{0}=\frac{4}{(n\pi)^{2}}dQU_{el}
|
05607d04dfabb922
|
train
|
human
|
|
w=\sum_{i=1}^{m}\alpha_{i}u_{i}\otimes v_{i}
|
c4f882c57c31075c
|
train
|
human
|
|
Z_{y^{\beta}}
|
7adb1a9ee3b99bdc
|
train
|
human
|
|
\beta_{s+2}(q)=\frac{\lambda_{s+2}(q)}{q}
|
9692d94c6da19b1e
|
train
|
human
|
|
t_{1}=\frac{AB}{c+v}+\frac{DE}{\frac{c}{n}-v}
|
acb4b9a6f178f9fb
|
train
|
human
|
|
0\notin F
|
970d78229d6ae142
|
train
|
human
|
|
(\begin{matrix}1&d\\ 0&1\end{matrix})
|
541b298e69c8ee7c
|
train
|
human
|
|
\nu
|
e709cbc456ffba96
|
train
|
human
|
|
log_{b}(\sqrt[y]{x})=\frac{log_{b}(x)}{y}
|
62c4c94aad313640
|
train
|
human
|
|
E=\frac{mz^{3}}{\sqrt{1+\frac{f^{3}}{z^{3}}}}
|
8ccd0874a8c9e5d0
|
train
|
human
|
|
\overline{lim}
|
e48c7dcd44b0a566
|
train
|
human
|
|
\frac{\partial u}{\partial y}
|
ec78011f9f137af6
|
train
|
human
|
|
A\overline{B}
|
991c85c32bcb3062
|
train
|
human
|
|
z=-1(L_{3})
|
2e870714c27cba01
|
train
|
human
|
|
\frac{3}{4}V_{g}+V_{e}
|
84f5050333f3c083
|
train
|
human
|
|
\int_{L}f(z)dz
|
4938cf8feab02a50
|
train
|
human
|
|
(\frac{248}{10}/372-43)
|
8a314f384ee0045a
|
train
|
human
|
|
\frac{du}{dy}
|
21e0d4756e4cc230
|
train
|
human
|
|
\vec{r}=[\begin{matrix}1\\ 1\end{matrix}]
|
f08f3eb5b06cd29d
|
train
|
human
|
|
3\frac{dy}{dx}=5y^{\frac{2}{5}}
|
c1dbecb8e2be50b3
|
train
|
human
|
|
|\mu_{3,1}|>\frac{1}{2}
|
197e98232402efed
|
train
|
human
|
|
P=P_{0}exp(-\frac{z}{H})
|
0bdb851944c4943a
|
train
|
human
|
|
P=K\rho^{1+1/n}
|
512cb24c84ab7b40
|
train
|
human
|
|
\tilde{C}_{9}
|
f9fc9e19e7d719a0
|
train
|
human
|
|
\hat{c}_{V}
|
7fabf7676f78a2ce
|
train
|
human
|
|
(\begin{matrix}a\\ a+1\end{matrix})=0
|
2b6417c1fe489d8a
|
train
|
human
|
|
\int ydA=0
|
0a1ca331dbcbbec1
|
train
|
human
|
|
\frac{dy}{dx}=0
|
12cb7ac361ddb9df
|
train
|
human
|
|
\gamma_{2}=2/(1+\sqrt{2})
|
13c7c91616763a6b
|
train
|
human
|
|
\dot{S}_{i}=-\int_{1}^{2}\frac{\dot{V}}{T}dp
|
1b93327deed5d81b
|
train
|
human
|
|
\alpha=\frac{R_{100}-R_{0}}{100R_{0}}
|
162a6ac8303a3f44
|
train
|
human
|
|
F=2\pi\int_{-1}^{+1}I\mu d\mu
|
4f486c9140057807
|
train
|
human
|
|
\sqrt{\frac{5}{126}}
|
950566418b8d8e5d
|
train
|
human
|
|
m=(\frac{t_{2}}{n})
|
7c32a6c77e33e977
|
train
|
human
|
|
\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
|
54ecd1584329ec81
|
train
|
human
|
|
T_{h}\cdot x=0
|
d484f15f8f423278
|
train
|
human
|
|
\tilde{u}(x)
|
94d3a01f4f91f5a9
|
train
|
human
|
|
60^{\circ}\cdot(2-\frac{R-B}{G-B})
|
b38c26bafc625416
|
train
|
human
|
|
\int_{A}(g-f)d\mu=0
|
0353063fe25bc4a9
|
train
|
human
|
|
\sum_{i\in\mathbb{N}}X^{i}Y
|
8ea1c2a49921f8d4
|
train
|
human
|
|
(\begin{matrix}0&0\\ 0&1\end{matrix})
|
110e39a23175ba05
|
train
|
human
|
|
\eta=\frac{1}{\mu_{0}\sigma_{0}}
|
718f6b7f74f83fb5
|
train
|
human
|
|
\sum_{k=2}^{m/2}\frac{m(m-k-1)!}{(m-2k)!k!}
|
58340d2303199118
|
train
|
human
|
|
b^{n}=\frac{V_{n}-U_{n}\sqrt{D}}{2}
|
0d35029560860783
|
train
|
human
|
|
P_{3}=(0,-72,2\sqrt{3},12)
|
e2a88454346d81a6
|
train
|
human
|
|
\int_{a}^{b}f(x)g^{\prime}(x)dx
|
43dfdddec08f9c86
|
train
|
human
|
|
(352+\sqrt{2})^{((2+361)+\sqrt{2})}
|
c0d7b4c87640a263
|
train
|
human
|
|
\frac{{(1-e^{-\alpha})}^{2}}{1+2\alpha e^{-\alpha}-e^{-2\alpha}}
|
387fbde52292ffa0
|
train
|
human
|
|
lim_{b\rightarrow0}\frac{a}{b}
|
86e5a8b6a8b41bb0
|
train
|
human
|
|
\hat{4}
|
503aa97cdf35beef
|
train
|
human
|
|
[\begin{matrix}1&R\\ 0&1\end{matrix}]
|
7a300985aad006cd
|
train
|
human
|
|
g_{(x_{1})}
|
78acb1cd04a28e6b
|
train
|
human
|
|
(m,\epsilon)
|
53e0da18f282642e
|
train
|
human
|
|
B([0,\infty))
|
ae255ae5ceedb62e
|
train
|
human
|
|
Q_{ROT}^{\prime}\rightarrow Q_{BEND}^{\prime}
|
0dda8cfa6497c976
|
train
|
human
|
|
\int dy=\int f^{\prime}(x)dx
|
ef7cdebb9ba47779
|
train
|
human
|
|
\mu=\frac{2N_{+}N_{-}}{N}+1
|
ff43f222c6baa2fc
|
train
|
human
|
|
|0\rangle=[\begin{matrix}1\\ 0\\ \end{matrix}]
|
b013743dd7c76c86
|
train
|
human
|
|
[x,x+O(x^{21/40})]
|
0d929374b5c71ff5
|
train
|
human
|
|
[\begin{matrix}0\\ 1\end{matrix}]
|
fb6c677e4d63785e
|
train
|
human
|
|
lim_{n\rightarrow\infty}T_{n}=T
|
c7c4577ce79bb347
|
train
|
human
|
|
W=P_{p}/(\hbar\omega_{p})
|
a53f2aadcd94c4c9
|
train
|
human
|
|
(\begin{matrix}9\\ 4\end{matrix})
|
0a863b72dd6da0a3
|
train
|
human
|
|
d\tilde{n}/d\eta
|
0721790118709f29
|
train
|
human
|
|
\lambda
|
fd34339e7eb797cd
|
train
|
human
|
|
f(v)=\lambda(v,...,v)
|
d0be3dad421d5002
|
train
|
human
|
|
f(\epsilon_{p})
|
120339ed522753e8
|
train
|
human
|
|
(\begin{matrix}p\\ n\end{matrix})
|
624009d81ccc6a3e
|
train
|
human
|
|
\tau_{w}=\frac{1}{8}fkpMa^{2}
|
11a9f7bdd4fb53e1
|
train
|
human
|
|
R_{T}=\frac{k\sigma_{T}(1-\nu)}{\alpha E}
|
97e560df2251fb7b
|
train
|
human
|
|
5^{\sqrt{189}}-381\cdot(\frac{197}{10})^{5}
|
938ecff9a43989c5
|
train
|
human
|
|
V=\frac{dW}{dq},I=\frac{dq}{dt}
|
b31d1f2cc1f1fadf
|
train
|
human
|
|
\int fdg
|
ed8f6118d8fcae38
|
train
|
human
|
|
\tilde{E}_{6}(q)
|
42955777672b3073
|
train
|
human
|
|
\tilde{f}(x,y)
|
3da53be2c87e01c3
|
train
|
human
|
|
\frac{\partial F_{k_{1}}}{\partial\phi}
|
19e26d626304d583
|
train
|
human
|
|
\int dV|\Psi|^{2}=N
|
27c5336db0cd1241
|
train
|
human
|
|
T^{a}=\frac{\lambda^{a}}{2}
|
57ca7b2c44234a25
|
train
|
human
|
|
\tilde{C}_{5}
|
52a109b799fe74bb
|
train
|
human
|
|
4^{\sqrt{8}}+10-\frac{10}{9}-8
|
93508e2dc460c14d
|
train
|
human
|
|
q=\frac{m\cdot b}{\sqrt{6-\frac{b^{7}}{c^{7}}}}
|
e01c36e666f3809f
|
train
|
human
|
|
J=-D\frac{\partial C}{\partial x}
|
48232605e1e66b91
|
train
|
human
|
|
\frac{\frac{(39\cdot3)}{6}}{189^{220}}
|
c625fd1d26600b81
|
train
|
human
|
|
\Delta T=\frac{T_{1}}{T_{2}}
|
9bf5f8c43bfd9295
|
train
|
human
|
|
\tilde{C}_{2}
|
94f40453f997846a
|
train
|
human
|
|
|\begin{matrix}a&b\\ c&d\end{matrix}|
|
652f8e136cd8edec
|
train
|
human
|
|
\frac{\frac{\frac{5}{322}}{10}}{(\frac{\sqrt{10}}{70})^{8}}
|
f135a4bf275ee897
|
train
|
human
|
|
(\overline{x})
|
d10417b526e9ef00
|
train
|
human
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.