Datasets:
File size: 5,113 Bytes
c9fe814 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MyoQuant-SDH-Data: The MyoQuant SDH Model Data."""
import csv
import json
import os
import datasets
_CITATION = """\
@InProceedings{Meyer,
title = {MyoQuant SDH Data},
author={Corentin Meyer},
year={2022}
}
"""
_NAMES = ["control", "sick"]
_DESCRIPTION = """\
This dataset is used to train the SDH model of MyoQuant to detect and quantify anomaly in the mitochondria repartition in SDH stained muscle fiber with myopathy disorders.
"""
_HOMEPAGE = "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data"
_LICENSE = "agpl-3.0"
_URLS = {
"SDH_16k": "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data/resolve/main/SDH_16k/SDH_16k.zip"
}
_METADATA_URL = {
"SDH_16k_metadata": "https://huggingface.co/datasets/corentinm7/MyoQuant-SDH-Data/resolve/main/SDH_16k/metadata.jsonl"
}
class SDH_16k(datasets.GeneratorBasedBuilder):
"""This dataset is used to train the SDH model of MyoQuant to detect and quantify anomaly in the mitochondria repartition in SDH stained muscle fiber with myopathy disorders."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
DEFAULT_CONFIG_NAME = "SDH_16k" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(num_classes=2, names=_NAMES),
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
task_templates=[
datasets.ImageClassification(image_column="image", label_column="label")
],
)
def _split_generators(self, dl_manager):
archive_path = dl_manager.download(_URLS)
split_metadata_path = dl_manager.download(_METADATA_URL)
files_metadata = {}
with open(split_metadata_path["SDH_16k_metadata"], encoding="utf-8") as f:
for lines in f.read().splitlines():
file_json_metdata = json.loads(lines)
files_metadata.setdefault(file_json_metdata["split"], []).append(
file_json_metdata
)
downloaded_files = dl_manager.download_and_extract(archive_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"download_path": downloaded_files["SDH_16k"],
"metadata": files_metadata["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"download_path": downloaded_files["SDH_16k"],
"metadata": files_metadata["validation"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"download_path": downloaded_files["SDH_16k"],
"metadata": files_metadata["test"],
},
),
]
def _generate_examples(self, download_path, metadata):
"""Generate images and labels for splits."""
for single_metdata in metadata:
img_path = os.path.join(
download_path,
single_metdata["split"],
single_metdata["label"],
single_metdata["file_name"],
)
yield single_metdata["file_name"], {
"image": {"path": img_path, "bytes": open(img_path, "rb").read()},
"label": single_metdata["label"],
}
|