# WARNING: Please, do not use the code in this script as a template to create another script:
# - It is a bad practice to use `datasets.load_dataset` inside a loading script. Please, avoid doing it.

import json
import math

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@ONLINE {wikidump,
    author = {Wikimedia Foundation},
    title  = {Wikimedia Downloads},
    url    = {https://dumps.wikimedia.org}
}
"""

_DESCRIPTION = """\
Wikipedia version split into plain text snippets for dense semantic indexing.
"""

_LICENSE = (
    "This work is licensed under the Creative Commons Attribution-ShareAlike "
    "3.0 Unported License. To view a copy of this license, visit "
    "http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to "
    "Creative Commons, PO Box 1866, Mountain View, CA 94042, USA."
)


def wiki40b_article_snippets(article, passage_len=100, overlap=0):
    paragraphs = article["text"].split("\n")
    aticle_idx = paragraphs.index("_START_ARTICLE_") + 1
    article_title = paragraphs[aticle_idx] if aticle_idx < len(paragraphs) else ""
    section_indices = [i + 1 for i, par in enumerate(paragraphs[:-1]) if par == "_START_SECTION_"]
    par_tabs = [par.split(" ") for par in paragraphs]
    word_map = [
        (i, len(" ".join(par[:j])), w)
        for i, par in enumerate(par_tabs)
        if not par[0].startswith("_START_")
        for j, w in enumerate(par)
        if i > 0
    ]
    step_size = passage_len - overlap
    passages = []
    for i in range(math.ceil(len(word_map) / step_size)):
        pre_toks = word_map[i * step_size : i * step_size + passage_len]
        start_section_id = max([0] + [j for j in section_indices if j <= pre_toks[0][0]])
        section_ids = [j for j in section_indices if j >= start_section_id and j <= pre_toks[-1][0]]
        section_ids = section_ids if len(section_ids) > 0 else [0]
        passage_text = " ".join([w for p_id, s_id, w in pre_toks])
        passages += [
            {
                "article_title": article_title,
                "section_title": " & ".join([paragraphs[j] for j in section_ids]),
                "wiki_id": article["wikidata_id"],
                "start_paragraph": pre_toks[0][0],
                "start_character": pre_toks[0][1],
                "end_paragraph": pre_toks[-1][0],
                "end_character": pre_toks[-1][1] + len(pre_toks[-1][2]) + 1,
                "passage_text": passage_text.replace("_NEWLINE_", "\n"),
            }
        ]
    return passages


def wikipedia_article_snippets(article, passage_len=100, overlap=0):
    paragraphs = [par for par in article["text"].split("\n") if not par.startswith("Category:")]
    if "References" in paragraphs:
        paragraphs = paragraphs[: paragraphs.index("References")]
    article_title = article["title"]
    section_indices = [
        i + 1
        for i, par in enumerate(paragraphs[:-2])
        if paragraphs[i] == "" and paragraphs[i + 1] != "" and paragraphs[i + 2] != ""
    ]
    par_tabs = [par.split(" ") for par in paragraphs]
    word_map = [(i, len(" ".join(par[:j])), w) for i, par in enumerate(par_tabs) for j, w in enumerate(par)]
    step_size = passage_len - overlap
    passages = []
    for i in range(math.ceil(len(word_map) / step_size)):
        pre_toks = word_map[i * step_size : i * step_size + passage_len]
        start_section_id = max([0] + [j for j in section_indices if j <= pre_toks[0][0]])
        section_ids = [j for j in section_indices if start_section_id <= j <= pre_toks[-1][0]]
        section_ids = section_ids if len(section_ids) > 0 else [-1]
        passage_text = " ".join([w for p_id, s_id, w in pre_toks])
        passages += [
            {
                "article_title": article_title,
                "section_title": " & ".join(["Start" if j == -1 else paragraphs[j].strip() for j in section_ids]),
                "wiki_id": article_title.replace(" ", "_"),
                "start_paragraph": pre_toks[0][0],
                "start_character": pre_toks[0][1],
                "end_paragraph": pre_toks[-1][0],
                "end_character": pre_toks[-1][1] + len(pre_toks[-1][2]) + 1,
                "passage_text": passage_text,
            }
        ]
    return passages


_SPLIT_FUNCTION_MAP = {
    "wikipedia": wikipedia_article_snippets,
    "wiki40b": wiki40b_article_snippets,
}


def generate_snippets(wikipedia, split_function, passage_len=100, overlap=0):
    for i, article in enumerate(wikipedia):
        for doc in split_function(article, passage_len, overlap):
            part_id = json.dumps(
                {
                    "datasets_id": i,
                    "wiki_id": doc["wiki_id"],
                    "sp": doc["start_paragraph"],
                    "sc": doc["start_character"],
                    "ep": doc["end_paragraph"],
                    "ec": doc["end_character"],
                }
            )
            doc["_id"] = part_id
            doc["datasets_id"] = i
            yield doc


class WikiSnippetsConfig(datasets.BuilderConfig):
    """BuilderConfig for WikiSnippets."""

    def __init__(
        self, wikipedia_name="wiki40b", wikipedia_version_name="en", snippets_length=100, snippets_overlap=0, **kwargs
    ):
        """BuilderConfig for WikiSnippets.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(WikiSnippetsConfig, self).__init__(**kwargs)
        self.wikipedia_name = wikipedia_name
        self.wikipedia_version_name = wikipedia_version_name
        self.snippets_length = snippets_length
        self.snippets_overlap = snippets_overlap


class WikiSnippets(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIG_CLASS = WikiSnippetsConfig
    BUILDER_CONFIGS = [
        WikiSnippetsConfig(
            name="wiki40b_en_100_0",
            version=datasets.Version("1.0.0"),
            wikipedia_name="wiki40b",
            wikipedia_version_name="en",
            snippets_length=100,
            snippets_overlap=0,
        ),
        WikiSnippetsConfig(
            name="wikipedia_en_100_0",
            version=datasets.Version("2.0.0"),
            wikipedia_name="wikipedia",
            wikipedia_version_name="20220301.en",
            snippets_length=100,
            snippets_overlap=0,
        ),
    ]

    test_dummy_data = False

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "_id": datasets.Value("string"),
                    "datasets_id": datasets.Value("int32"),
                    "wiki_id": datasets.Value("string"),
                    "start_paragraph": datasets.Value("int32"),
                    "start_character": datasets.Value("int32"),
                    "end_paragraph": datasets.Value("int32"),
                    "end_character": datasets.Value("int32"),
                    "article_title": datasets.Value("string"),
                    "section_title": datasets.Value("string"),
                    "passage_text": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage="https://dumps.wikimedia.org",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # WARNING: It is a bad practice to use `datasets.load_dataset` inside a loading script. Please, avoid doing it.
        wikipedia = datasets.load_dataset(
            path=self.config.wikipedia_name,
            name=self.config.wikipedia_version_name,
        )

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"wikipedia": wikipedia}),
        ]

    def _generate_examples(self, wikipedia):
        logger.info(f"generating examples from = {self.config.wikipedia_name} {self.config.wikipedia_version_name}")
        for split in wikipedia:
            dset = wikipedia[split]
            split_function = _SPLIT_FUNCTION_MAP[self.config.wikipedia_name]
            for doc in generate_snippets(
                dset, split_function, passage_len=self.config.snippets_length, overlap=self.config.snippets_overlap
            ):
                id_ = doc["_id"]
                yield id_, doc