File size: 4,134 Bytes
775f54b
89798ac
 
 
 
 
 
 
775f54b
 
 
 
 
 
bda75b4
775f54b
 
587f4d2
775f54b
d598d2e
 
775f54b
 
 
 
 
 
56e106e
775f54b
1832209
89798ac
775f54b
4423fc7
 
9154724
4423fc7
775f54b
54f217e
4423fc7
 
 
 
 
 
 
 
 
 
 
 
 
775f54b
4423fc7
 
7c7f1ed
4423fc7
06b4412
4423fc7
 
 
 
 
 
 
89798ac
 
017bb14
4423fc7
 
 
 
 
 
 
e5eadad
 
 
 
 
 
4423fc7
775f54b
4423fc7
 
 
 
775f54b
16dbbb0
775f54b
03082b0
ebe0b3f
1d65013
775f54b
 
 
c9334b8
3092132
775f54b
54f64bc
775f54b
 
54f64bc
775f54b
 
 
 
407ec51
775f54b
407ec51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
language:
- en
license: apache-2.0
size_categories:
- 1M<n<10M
task_categories:
- video-text-to-text
configs:
- config_name: Live-CC-5M for Dataset Viewer
  data_files:
  - split: preview_first_100
    path: live_cc_100_for_preview.json
  - split: full_5m
    path: live_cc_5m_with_seeks.jsonl
---

# Dataset Card for Live-CC-5M

![image/png](https://cdn-uploads.huggingface.co/production/uploads/642435a1a3adbc7142c3b0a6/8UHcUg6ZsSyyPn6tpZve1.png)

## Dataset Description
- **Curated by:** Joya Chen
- **Language(s) (NLP):** English
- **License:** Apache License 2.0

## Uses
This dataset is used for [LiveCC-7B-Base](https://huggingface.co/chenjoya/LiveCC-7B-Instruct) model pre-training. We only allow the use of this dataset for academic research and educational purposes. For OpenAI GPT-4o generated user prompts, we recommend users check the [OpenAI Usage Policy](https://openai.com/policies/usage-policies/).

- **Project Page**: https://showlab.github.io/livecc
- **Paper**: https://huggingface.co/papers/2504.16030

### Live-CC-5M Dataset
  
  - Statistics: 5,047,208 YouTube Video-CC 30~240s samples.
    ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642435a1a3adbc7142c3b0a6/-RR-sI7F1a1XpxuQad2DH.png)

  - Annotation JSONL (YouTube CC): 

    Each line of the JSONL file is organized in a common user/assistant conversation format with a special "text_stream" key. Example:
    ```
    [
      {"role": "user", "content": [{"type": "video", "video": "video/youtube/-4dnPeRv1ns.mp4", "video_start": 16.8, "video_end": 158.8}, {"type": "text", "text": "", "previous": "", "title": "Airsoft G&G Combat Machine M4 Review"}]},
      {"role": "assistant", "content": [{"type": "text_stream", "text_stream": [[16.8, 16.9, "all"], [16.9, 17.0, "right"], [17.0, 17.1, "you"], [17.1, 17.3, "guys"], [17.3, 17.4, "so"], [17.4, 17.5, "this"], ...]}]}
    ]
    ```
    - "title" denotes the YouTube title.
    - "previous" denotes previous ASR content before "video_start".
    - Each item in "text_stream" indicates start timestamp, end timestamp, and the word.

    During pre-training, we use "title" and "previous" as context. Please refer to our dataloader (https://github.com/showlab/livecc/data/lmm_dataset.py) to learn how to make it compatible with popular LMMs (e.g. QwenVL series).
  
    The last line of JSONL contains the file handle seek indices:
    ```
    b'[0, 3149, 7796, 10436, 18949, 22917, 41985, 65721, 73045, 76797, 82262, ...]'
    ```
    This allows for easy streaming loading access using:
    
    ```python
    import json

    # read the last line of jsonl
    def readlastline(path: str):
      with open(path, "rb") as f:
          f.seek(-2, 2) # avoid last 

          while f.read(1) != b"\n":  
              f.seek(-2, 1)
          return f.readline()
    
    # parse to seek indices list
    seeks = json.loads(readlastline('live_cc_5m_with_seeks.jsonl'))
    
    # during data loader
    def __getitem(self, index):
      ...
      with open('live_cc_5m_with_seeks.jsonl') as f:
        f.seek(seeks[index])
        datum = json.loads(f.readline())
      ...
    ```
  
  - Videos: Due to 5M videos are too large, we are sorry that we cannot find way to share them. But,
    - You can find all YouTube IDs in the annotation JSONL
    - We have released video files in SFT dataset https://huggingface.co/datasets/chenjoya/Live-WhisperX-526K


### Data Production Pipeline

![image/png](https://cdn-uploads.huggingface.co/production/uploads/642435a1a3adbc7142c3b0a6/vQc91ksNXBeYALvKvcN8y.png)

Please read the paper Section3 for details. They have been fully open-sourced at: https://github.com/showlab/livecc/tree/main/data/production

## Citation

If you find our work helpful, feel free to give us a cite ;)

```bibtex
@article{livecc,
  author       = {Joya Chen and Ziyun Zeng and Yiqi Lin and Wei Li and Zejun Ma and Mike Zheng Shou},
  title        = {LiveCC: Learning Video LLM with Streaming Speech Transcription at Scale},
  journal      = {arXiv preprint arXiv:2504.16030}
  year         = {2025},
}
```

## Contact

[Joya Chen](https://chenjoya.github.io/)