# coding=utf-8 ''' Reference: https://huggingface.co/datasets/nielsr/funsd/blob/main/funsd.py ''' import json import os from PIL import Image import datasets def load_image(image_path): image = Image.open(image_path).convert("RGB") w, h = image.size return image, (w, h) def normalize_bbox(bbox, size): return [ int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]), ] logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{Jaume2019FUNSDAD, title={FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents}, author={Guillaume Jaume and H. K. Ekenel and J. Thiran}, journal={2019 International Conference on Document Analysis and Recognition Workshops (ICDARW)}, year={2019}, volume={2}, pages={1-6} } """ _DESCRIPTION = """\ https://guillaumejaume.github.io/FUNSD/ """ class LayoutLMConfig(datasets.BuilderConfig): """BuilderConfig for FUNSD""" def __init__(self, **kwargs): """BuilderConfig for FUNSD. Args: **kwargs: keyword arguments forwarded to super. """ super(LayoutLMConfig, self).__init__(**kwargs) class LayoutLM(datasets.GeneratorBasedBuilder): """Conll2003 dataset.""" BUILDER_CONFIGS = [ LayoutLMConfig(name="dataset_layoutlm", version=datasets.Version("1.0.0"), description="FUNSD dataset probe"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=["O", "B-HEADER", "I-HEADER","B-SUBHEADER", "I-SUBHEADER","B-TEXTO", "I-TEXTO","B-NUMERAL", "I-NUMERAL", "B-RESUMEN", "I-RESUMEN"] ) ), "image": datasets.features.Image(), } ), supervised_keys=None, homepage="https://guillaumejaume.github.io/FUNSD/", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" downloaded_file = dl_manager.download_and_extract("https://huggingface.co/datasets/SickBoy/layout_documents/resolve/main/dataset.zip") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": f"{downloaded_file}/dataset/training_data/"} ), ] def get_line_bbox(self, bboxs): x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)] y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)] x0, y0, x1, y1 = min(x), min(y), max(x), max(y) assert x1 >= x0 and y1 >= y0 bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))] return bbox def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) ann_dir = os.path.join(filepath, "annotations") img_dir = os.path.join(filepath, "images") for guid, file in enumerate(sorted(os.listdir(ann_dir))): tokens = [] bboxes = [] ner_tags = [] file_path = os.path.join(ann_dir, file) with open(file_path, "r", encoding="utf8") as f: data = json.load(f) image_path = os.path.join(img_dir, file) image_path = image_path.replace("json", "png") image, size = load_image(image_path) for item in data["form"]: cur_line_bboxes = [] words, label = item["words"], item["label"] words = [w for w in words if w["text"].strip() != ""] if len(words) == 0: continue if label == "otro": for w in words: tokens.append(w["text"]) ner_tags.append("O") cur_line_bboxes.append(normalize_bbox(w["box"], size)) else: tokens.append(words[0]["text"]) ner_tags.append("B-" + label.upper()) cur_line_bboxes.append(normalize_bbox(words[0]["box"], size)) for w in words[1:]: tokens.append(w["text"]) ner_tags.append("I-" + label.upper()) cur_line_bboxes.append(normalize_bbox(w["box"], size)) cur_line_bboxes = self.get_line_bbox(cur_line_bboxes) bboxes.extend(cur_line_bboxes) yield guid, {"id": str(guid), "tokens": tokens, "bboxes": bboxes, "ner_tags": ner_tags, "image": image}