--- dataset_info: - config_name: Documents features: - name: doc_id dtype: string - name: doc dtype: string splits: - name: history num_bytes: 508218 num_examples: 224 - name: religion num_bytes: 302837 num_examples: 126 - name: recherche num_bytes: 235256 num_examples: 69 - name: python num_bytes: 660763 num_examples: 194 download_size: 952235 dataset_size: 1707074 - config_name: MOOC_MCQ_Queries features: - name: query_id dtype: string - name: query dtype: string - name: answers sequence: string - name: distractions sequence: string - name: relevant_docs sequence: string splits: - name: history num_bytes: 13156 num_examples: 58 - name: religion num_bytes: 52563 num_examples: 125 - name: recherche num_bytes: 18791 num_examples: 52 - name: python num_bytes: 29759 num_examples: 85 download_size: 80494 dataset_size: 114269 configs: - config_name: Documents data_files: - split: history path: Documents/history-* - split: religion path: Documents/religion-* - split: recherche path: Documents/recherche-* - split: python path: Documents/python-* - config_name: MOOC_MCQ_Queries data_files: - split: history path: MOOC_MCQ_Queries/history-* - split: religion path: MOOC_MCQ_Queries/religion-* - split: recherche path: MOOC_MCQ_Queries/recherche-* - split: python path: MOOC_MCQ_Queries/python-* --- # Text embedding Datasets The text embedding datasets consist of several (query, passage) paired datasets aiming for text-embedding model finetuning. These datasets are ideal for developing and testing algorithms in the fields of natural language processing, information retrieval, and similar applications. ## Dataset Details Each dataset in this collection is structured to facilitate the training and evaluation of text-embedding models. The datasets are diverse, covering multiple domains and formats. They are particularly useful for tasks like semantic search, question-answering systems, and document retrieval. ### [MOOC MCQ Queries] The "MOOC MCQ Queries" dataset is derived from [FUN MOOC](https://www.fun-mooc.fr/fr/), an online platform offering a wide range of French courses across various domains. This dataset is uniquely valuable for its high-quality content, manually curated to assist students in understanding course materials better. #### Content Overview: - **Language**: French - **Domains**: - History: 57 examples - Religion: 125 examples - [Other domains to be added] - **Dataset Description**: Each record in the dataset includes the following fields: ```json { "query_id": "Unique identifier for each query", "query": "Text of the multiple-choice question (MCQ)", "answers": ["List of correct answer choices"], "distractions": ["List of incorrect choices"], "relevant_docs": ["List of relevant document IDs aiding the answer"] } ``` - **statistics**: | Category | Num. of Queries | Query Avg. Words | Number of Docs | Short Docs (<375 words) | Long Docs (≥375 words) | Doc Avg. Words | |----------------|-----------------|------------------|----------------|-------------------------|------------------------|----------------| | history | 57 | 11.31 | 224 | 147 | 77 | 351.79 | | religion | 125 | 15.08 | 126 | 78 | 48 | 375.63 | | recherche | 52 | 12.71 | 69 | 20 | 49 | 535.00 | | python | 85 | 21.24 | 194 | 27 | 167 | 552.60 | ### [Wikitext generated Queries] To complete ### [Documents] This dataset is an extensive collection of document chunkings or entire document for short texts, designed to complement the MOOC MCQ Queries and other datasets in the collection. - **chunking strategies**: - MOOC MCQ Queries: documents are chunked according to their natural divisions, like sections or subsections, ensuring that each chunk maintains contextual integrity. - **content format**: ```json { "doc_id": "Unique identifier for each document", "doc": "Text content of the document" } ```