Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Persian
Libraries:
Datasets
Dask
License:
matin-ebrahimkhani commited on
Commit
1cb8fd9
·
verified ·
1 Parent(s): 9d4f601

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +142 -23
README.md CHANGED
@@ -1,25 +1,144 @@
 
1
  ---
2
- dataset_info:
3
- features:
4
- - name: sentences
5
- dtype: string
6
- - name: tokens
7
- sequence: string
8
- - name: characters
9
- sequence: string
10
- - name: pos_labels
11
- sequence: string
12
- - name: space_labels
13
- sequence: int64
14
- splits:
15
- - name: train
16
- num_bytes: 1022649369
17
- num_examples: 424181
18
- download_size: 151255810
19
- dataset_size: 1022649369
20
- configs:
21
- - config_name: default
22
- data_files:
23
- - split: train
24
- path: data/train-*
25
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
  ---
3
+ language:
4
+ - fa
5
+ license: gpl-3.0
6
+ size_categories:
7
+ - 100K<n<1M
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
+
10
+ # Persian Space and ZWNJ Correction Dataset
11
+
12
+ ## Dataset Description
13
+
14
+ ### Dataset Summary
15
+
16
+ This dataset contains Persian text annotated for space and Zero-Width Non-Joiner (ZWNJ) correction tasks. It consists of 424,181 examples derived from the Bijankhan and Peykare corpora. Each example includes the original sentence, tokenized text, character-level information, part-of-speech tags, and space labels.
17
+
18
+ The dataset is designed for training models that can automatically correct spacing and ZWNJ usage in Persian text, addressing common orthographic issues in Persian digital text.
19
+
20
+ ### Languages
21
+
22
+ The dataset contains text in Persian (Farsi) language.
23
+
24
+ ## Dataset Structure
25
+
26
+ ### Data Instances
27
+
28
+ Each instance in the dataset contains:
29
+ - `sentences`: The complete Persian text string
30
+ - `tokens`: Tokenized form of the sentence
31
+ - `characters`: Individual non-space characters from the sentence
32
+ - `pos_labels`: Part-of-speech tags for each token
33
+ - `space_labels`: Space and ZWNJ labels for each character
34
+
35
+ ### Data Fields
36
+
37
+ - `sentences`: string - Full Persian text sentence
38
+ - `tokens`: list of strings - The words/tokens in the sentence
39
+ - `characters`: list of strings - Individual characters (excluding spaces and ZWNJ)
40
+ - `pos_labels`: list of strings - POS tag for each token
41
+ - `space_labels`: list of integers - Labels indicating proper space or ZWNJ placement:
42
+ - `0`: No space after the character
43
+ - `1`: Space after the character
44
+ - `2`: ZWNJ (Zero-Width Non-Joiner) after the character
45
+
46
+ ### Data Splits
47
+
48
+ While the dataset does not come with predefined splits, in the original research, it was divided as follows:
49
+ - 80% for training
50
+ - 10% for validation
51
+ - 10% for testing
52
+
53
+ Users can recreate these splits or create custom splits as needed for their specific use cases.
54
+
55
+ ## Dataset Creation
56
+
57
+ ### Source Data
58
+
59
+ #### Initial Data Collection and Normalization
60
+
61
+ This dataset was derived from two major Persian corpora:
62
+
63
+ - **Bijankhan Corpus**: A Persian tagged corpus developed for linguistics research and natural language processing.
64
+ - **Peykare Corpus**: A comprehensive Persian corpus developed for language resources and evaluation.
65
+
66
+ ### Annotations
67
+
68
+ The annotation process involved:
69
+
70
+ [PLACEHOLDER: Brief description of the annotation procedure]
71
+
72
+ For detailed information about the preprocessing, annotation, and labeling procedures, please refer to:
73
+
74
+ [PAPER CITATION PLACEHOLDER]
75
+
76
+ ## Usage
77
+
78
+ This dataset is intended for training and evaluating models for Persian space and ZWNJ correction. Several models have been trained using this dataset:
79
+
80
+ - https://huggingface.co/PerSpaCor/bert-base-multilingual-uncased
81
+ - https://huggingface.co/PerSpaCor/Relu-Norm
82
+ - https://huggingface.co/PerSpaCor/DualStep-DropNet
83
+ - https://huggingface.co/PerSpaCor/SimplexNet
84
+ - https://huggingface.co/PerSpaCor/bert-base-multilingual-cased
85
+ - https://huggingface.co/PerSpaCor/HooshvareLab-bert-base-parsbert-uncased
86
+ - https://huggingface.co/PerSpaCor/HooshvareLab-bert-fa-zwnj-base
87
+ - https://huggingface.co/PerSpaCor/HooshvareLab-roberta-fa-zwnj-base
88
+ - https://huggingface.co/PerSpaCor/imvladikon-charbert-roberta-wiki
89
+
90
+ ### Example Code
91
+
92
+ ```python
93
+ from datasets import load_dataset
94
+
95
+ # Load the dataset
96
+ dataset = load_dataset("PerSpaCor/bijankhan-peykare-annotated")
97
+
98
+ # Sample usage
99
+ example = dataset[0]
100
+ print(f"Sentence: {example['sentences']}")
101
+ print(f"Characters: {example['characters']}")
102
+ print(f"POS Labels: {example['pos_labels']}")
103
+ print(f"Space Labels: {example['space_labels']}")
104
+
105
+ # Create splits if needed
106
+ train_test = dataset.train_test_split(test_size=0.2)
107
+ test_valid = train_test["test"].train_test_split(test_size=0.5)
108
+
109
+ train_dataset = train_test["train"]
110
+ valid_dataset = test_valid["train"]
111
+ test_dataset = test_valid["test"]
112
+ ```
113
+
114
+ ## Citation
115
+
116
+ If you use this dataset in your research, please cite:
117
+
118
+ [PAPER CITATION PLACEHOLDER]
119
+
120
+ And also cite the original corpora:
121
+
122
+ ```bibtex
123
+ @article{bijankhan,
124
+ author = {Bijankhan, M.},
125
+ title = {The Role of Linguistic Structures in Writing Grammar: Introduction to a Computer Software},
126
+ journal = {Journal of Linguistics},
127
+ volume = {19},
128
+ number = {2},
129
+ pages = {48--67},
130
+ year = {2004}
131
+ }
132
+
133
+ @article{peykare,
134
+ author = {Bijankhan, M. and Sheykhzadegan, J. and Bahrani, M. and others},
135
+ title = {Lessons from building a Persian written corpus: Peykare},
136
+ journal = {Language Resources and Evaluation},
137
+ volume = {45},
138
+ number = {2},
139
+ pages = {143--164},
140
+ year = {2011},
141
+ doi = {10.1007/s10579-010-9132-x},
142
+ url = {https://doi.org/10.1007/s10579-010-9132-x}
143
+ }
144
+ ```