--- task_categories: - image-segmentation - image-classification language: - en tags: - agritech - hyperspectral - spectroscopy - fruit - sub-class classification - detection size_categories: - 10K This is a notebook showing how hyperspectral data, collected with the Living Optics camera. ## Requirements - [lo-sdk](https://cloud.livingoptics.com/) - [datareader](https://github.com/livingoptics/datareader.git) ## Download instructions You can access this dataset via the [Living Optics Cloud Portal](https://cloud.livingoptics.com/shared-resources?file=data%2Fannotated-datasets%2Fhyperspectral-orchard.zip). See our [Spatial Spectral ML](https://github.com/livingoptics/spatial-spectral-ml) project for an example of how to train and run a segmentation and spectral classification algoirthm using this dataset. ## Usage ```python import os import numpy as np import matplotlib.pyplot as plt from lo_dataset_reader import DatasetReader, spectral_coordinate_indices_in_mask, rle_to_mask os.environ["QT_QPA_PLATFORM"] = "xcb" dataset_path = "/path/to/dataset" dataset = DatasetReader(dataset_path, display_fig=True) for idx, ((info, scene, spectra, unit, images_extern), (converted_spectra, converted_unit), annotations, library_spectra, labels) in enumerate(dataset): for ann_idx, annotation in enumerate(annotations): annotation["labels"] = labels # Visualise the annotation on the scene dataset.save_annotation_visualisation(scene, annotation, images_extern, ann_idx) # Get spectrum stats from annotation stats = annotation.get("extern", {}).get("stats", {}) label = stats.get("category") mean_radiance_spectrum = stats.get("mean_radiance_spectrum") mean_reflectance_spectrum = stats.get("mean_reflectance_spectrum") # Get mask and spectral indices mask = rle_to_mask(annotation["segmentation"], scene.shape) spectral_indices = spectral_coordinate_indices_in_mask(mask, info.sampling_coordinates) # Extract spectra and converted spectra spec = spectra[spectral_indices, :] if converted_spectra is not None: conv_spec = converted_spectra[spectral_indices, :] else: conv_spec = None # X-axis based on band index or wavelengths (optional) x = np.arange(spec.shape[1]) if stats.get("wavelength_min") is not None and stats.get("wavelength_max") is not None: x = np.linspace(stats["wavelength_min"], stats["wavelength_max"], spec.shape[1]) # Determine plot layout if converted_spectra is not None: fig, axs = plt.subplots(2, 2, figsize=(12, 8)) axs_top = axs[0] axs_bottom = axs[1] else: fig, axs_top = plt.subplots(1, 2, figsize=(12, 4)) print(f"Warning: No converted_spectra for annotation '{label}'") unit_label = unit.capitalize() if unit else "Radiance" # (1,1) Individual spectra for s in spec: axs_top[0].plot(x, s, alpha=0.3) axs_top[0].set_title(f"{unit_label.capitalize()} Spectra") axs_top[0].set_xlabel("Wavelength") axs_top[0].set_ylabel(f"{unit_label.capitalize()}") # (1,2) Mean + Min/Max (Before conversion) if mean_radiance_spectrum is not None: spec_min = np.min(spec, axis=0) spec_max = np.max(spec, axis=0) axs_top[1].fill_between(x, spec_min, spec_max, color='lightblue', alpha=0.5, label='Min-Max Range') axs_top[1].plot(x, mean_radiance_spectrum, color='blue', label=f'Mean {unit_label.capitalize()}') axs_top[1].set_title(f"Extern Mean ± Range ({unit_label.capitalize()})") axs_top[1].set_xlabel("Wavelength") axs_top[1].set_ylabel(f"{unit_label.capitalize()}") axs_top[1].legend() # (2,1) and (2,2) Only if converted_spectra is available if converted_spectra is not None and conv_spec is not None: for s in conv_spec: axs_bottom[0].plot(x, s, alpha=0.3) axs_bottom[0].set_title(f"{converted_unit} Spectra") axs_bottom[0].set_xlabel("Wavelength") axs_bottom[0].set_ylabel(f"{converted_unit}") if mean_reflectance_spectrum is not None: conv_min = np.min(conv_spec, axis=0) conv_max = np.max(conv_spec, axis=0) axs_bottom[1].fill_between(x, conv_min, conv_max, color='lightgreen', alpha=0.5, label='Min-Max Range') axs_bottom[1].plot(x, mean_reflectance_spectrum, color='green', label=f'Mean {converted_unit}') axs_bottom[1].set_title(f"Extern Mean ± Range ({converted_unit})") axs_bottom[1].set_xlabel("Wavelength") axs_bottom[1].set_ylabel(f"{converted_unit}") axs_bottom[1].legend() fig.suptitle(f"Annotation {label}", fontsize=16) plt.tight_layout() plt.show() ``` ![image/png](https://huggingface.co/datasets/LivingOptics/hyperspectral-orchard/resolve/main/media/hyperspectral-orchard.png) ## Citation Raw data is available by request