Datasets:
HiTZ
/

Modalities:
Text
Formats:
json
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 5,926 Bytes
7061175
 
ddddf5a
5a0c974
 
ddddf5a
5a0c974
 
ddddf5a
 
5a0c974
2b38d7b
5a0c974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025579
dc60cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a0c974
2025579
dc60cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a0c974
7061175
ddddf5a
5a0c974
 
ddddf5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
license: apache-2.0
task_categories:
  - token-classification
  - text-classification
language:
  - en
  - es
pretty_name: meta4xnli
size_categories:
  - 1K<n<10K
configs:
  - config_name: det_es_finetune
    data_files:
      - split: train
        path: detection/splits/es/meta4xnli_train.jsonl
      - split: dev
        path: detection/splits/es/meta4xnli_dev.jsonl
      - split: test
        path: detection/splits/es/meta4xnli_test.jsonl
  - config_name: det_en_finetune
    data_files:
      - split: train
        path: detection/splits/en/meta4xnli_train.jsonl
      - split: dev
        path: detection/splits/en/meta4xnli_dev.jsonl
      - split: test
        path: detection/splits/en/meta4xnli_test.jsonl
  - config_name: det_es_eval
    data_files:
      - split: esxnli_prem
        path: detection/source_datasets/es/esxnli_prem.jsonl
      - split: esxnli_hyp
        path: detection/source_datasets/es/esxnli_hyp.jsonl
      - split: xnli_dev_prem
        path: detection/source_datasets/es/xnli_dev_prem.jsonl
      - split: xnli_dev_hyp
        path: detection/source_datasets/es/xnli_dev_hyp.jsonl
      - split: xnli_test_prem
        path: detection/source_datasets/es/xnli_test_prem.jsonl
      - split: xnli_test_hyp
        path: detection/source_datasets/es/xnli_test_hyp.jsonl
  - config_name: det_en_eval
    data_files:
      - split: esxnli_prem
        path: detection/source_datasets/en/esxnli_prem.jsonl
      - split: esxnli_hyp
        path: detection/source_datasets/en/esxnli_hyp.jsonl
      - split: xnli_dev_prem
        path: detection/source_datasets/en/xnli_dev_prem.jsonl
      - split: xnli_dev_hyp
        path: detection/source_datasets/en/xnli_dev_hyp.jsonl
      - split: xnli_test_prem
        path: detection/source_datasets/en/xnli_test_prem.jsonl
      - split: xnli_test_hyp
        path: detection/source_datasets/en/xnli_test_hyp.jsonl
  - config_name: int_finetune
    data_files:
    - split: train_no_met
      path : interpretation/splits/train_no_met.jsonl
    - split: train_met
      path: interpretation/splits/train_met.jsonl
    - split: train_nonrelevant
      path: interpretation/splits/train_nonrelevant.jsonl
    - split: dev_no_met
      path: interpretation/splits/dev_no_met.jsonl
    - split: dev_met
      path: interpretation/splits/dev_met.jsonl
    - split: dev_nonrelevant
      path: interpretation/splits/dev_nonrelevant.jsonl
    - split: test_no_met
      path: interpretation/splits/test_no_met.jsonl
    - split: test_met
      path: interpretation/splits/test_met.jsonl
    - split: test_nonrelevant
      path: interpretation/splits/test_nonrelevant.jsonl
  - config_name: int_eval
    data_files:
    - split: esxnli_met
      path : interpretation/source_datasets/esxnli_met.jsonl
    - split: esxnli_no_met
      path : interpretation/source_datasets/esxnli_no_met.jsonl
    - split: esxnli_nonrelevant
      path : interpretation/source_datasets/esxnli_nonrelevant.jsonl
    - split: xnli_dev_met
      path : interpretation/source_datasets/xnli_dev_met.jsonl
    - split: xnli_dev_no_met
      path : interpretation/source_datasets/xnli_dev_no_met.jsonl
    - split: xnli_dev_nonrelevant
      path : interpretation/source_datasets/xnli_dev_nonrelevant.jsonl
    - split: xnli_test_met
      path : interpretation/source_datasets/xnli_test_met.jsonl
    - split: xnli_test_no_met
      path : interpretation/source_datasets/xnli_test_no_met.jsonl
    - split: xnli_test_nonrelevant
      path : interpretation/source_datasets/xnli_test_nonrelevant.jsonl

---



# Dataset Card for Dataset Name

Meta4XNLI is a parallel dataset with annotations in English and Spanish for metaphor detection at token level (13320 sentences) and metaphor interpretation framed within NLI the task (9990 premise-hypothesis pairs).
It is a collection of existing NLI datasets manually labeled for both metaphor tasks.

- **Repository**: data available also in .tsv format at https://github.com/elisanchez-beep/meta4xnli
- **Paper**: [Meta4XNLI: A Crosslingual Parallel Corpus for Metaphor Detection and Interpretation](https://arxiv.org/pdf/2404.07053.pdf)


### Dataset Sources

Meta4XNLI is a collection of [XNLI](xnli) and [esXNLI](https://aclanthology.org/2020.emnlp-main.618/) datasets with metaphor annotations.


## Dataset Structure


The dataset is divided according to detection and interpretation tasks.
- Detection: labels at token level.
  - splits: train, dev and test files for fine-tuning and evaluation.
  - source_datasets: splits by original source dataset and premises and hypotheses for evaluation.
- Intepretation: set of sentences split by metaphor occurrence. Non-relevant cases include sentences with metaphors, however, their literal interpretation is not necessary to extract the inference label.
  - splits: train, dev and test files for fine-tuning and evaluation.
  - source_datasets: splits by original source dataset and metaphor presence.
 
## Dataset Fields
- Detection:
  - "id": example id
  - "tokens": list of text split.
  - "tags": list of metaphor annotations for each token.
    - 0: literal
    - 1: metaphor
 
- Interpretation:
  - "language": Spanish (es) or English (en)
  - "gold_label": inference label: entailment, neutral or contradiction
  - "sentence1": premise
  - "sentence2": hypothesis
  - "promptID": premise id
  - "pairID": premise and hypothesis pair id
  - "genre": text domain
  - "source_dataset": original dataset: {xnli.dev, xnli.test, esxnli}
 

## Citation [optional]

If you use Meta4XNLI, please cite our work:

```
@misc{sanchezbayona2024meta4xnli,
      title={Meta4XNLI: A Crosslingual Parallel Corpus for Metaphor Detection and Interpretation}, 
      author={Elisa Sanchez-Bayona and Rodrigo Agerri},
      year={2024},
      eprint={2404.07053},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## Dataset Card Contact

{elisa.sanchez, rodrigo.agerri}@ehu.eus