Datasets:
File size: 5,926 Bytes
7061175 ddddf5a 5a0c974 ddddf5a 5a0c974 ddddf5a 5a0c974 2b38d7b 5a0c974 2025579 dc60cd0 5a0c974 2025579 dc60cd0 5a0c974 7061175 ddddf5a 5a0c974 ddddf5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
license: apache-2.0
task_categories:
- token-classification
- text-classification
language:
- en
- es
pretty_name: meta4xnli
size_categories:
- 1K<n<10K
configs:
- config_name: det_es_finetune
data_files:
- split: train
path: detection/splits/es/meta4xnli_train.jsonl
- split: dev
path: detection/splits/es/meta4xnli_dev.jsonl
- split: test
path: detection/splits/es/meta4xnli_test.jsonl
- config_name: det_en_finetune
data_files:
- split: train
path: detection/splits/en/meta4xnli_train.jsonl
- split: dev
path: detection/splits/en/meta4xnli_dev.jsonl
- split: test
path: detection/splits/en/meta4xnli_test.jsonl
- config_name: det_es_eval
data_files:
- split: esxnli_prem
path: detection/source_datasets/es/esxnli_prem.jsonl
- split: esxnli_hyp
path: detection/source_datasets/es/esxnli_hyp.jsonl
- split: xnli_dev_prem
path: detection/source_datasets/es/xnli_dev_prem.jsonl
- split: xnli_dev_hyp
path: detection/source_datasets/es/xnli_dev_hyp.jsonl
- split: xnli_test_prem
path: detection/source_datasets/es/xnli_test_prem.jsonl
- split: xnli_test_hyp
path: detection/source_datasets/es/xnli_test_hyp.jsonl
- config_name: det_en_eval
data_files:
- split: esxnli_prem
path: detection/source_datasets/en/esxnli_prem.jsonl
- split: esxnli_hyp
path: detection/source_datasets/en/esxnli_hyp.jsonl
- split: xnli_dev_prem
path: detection/source_datasets/en/xnli_dev_prem.jsonl
- split: xnli_dev_hyp
path: detection/source_datasets/en/xnli_dev_hyp.jsonl
- split: xnli_test_prem
path: detection/source_datasets/en/xnli_test_prem.jsonl
- split: xnli_test_hyp
path: detection/source_datasets/en/xnli_test_hyp.jsonl
- config_name: int_finetune
data_files:
- split: train_no_met
path : interpretation/splits/train_no_met.jsonl
- split: train_met
path: interpretation/splits/train_met.jsonl
- split: train_nonrelevant
path: interpretation/splits/train_nonrelevant.jsonl
- split: dev_no_met
path: interpretation/splits/dev_no_met.jsonl
- split: dev_met
path: interpretation/splits/dev_met.jsonl
- split: dev_nonrelevant
path: interpretation/splits/dev_nonrelevant.jsonl
- split: test_no_met
path: interpretation/splits/test_no_met.jsonl
- split: test_met
path: interpretation/splits/test_met.jsonl
- split: test_nonrelevant
path: interpretation/splits/test_nonrelevant.jsonl
- config_name: int_eval
data_files:
- split: esxnli_met
path : interpretation/source_datasets/esxnli_met.jsonl
- split: esxnli_no_met
path : interpretation/source_datasets/esxnli_no_met.jsonl
- split: esxnli_nonrelevant
path : interpretation/source_datasets/esxnli_nonrelevant.jsonl
- split: xnli_dev_met
path : interpretation/source_datasets/xnli_dev_met.jsonl
- split: xnli_dev_no_met
path : interpretation/source_datasets/xnli_dev_no_met.jsonl
- split: xnli_dev_nonrelevant
path : interpretation/source_datasets/xnli_dev_nonrelevant.jsonl
- split: xnli_test_met
path : interpretation/source_datasets/xnli_test_met.jsonl
- split: xnli_test_no_met
path : interpretation/source_datasets/xnli_test_no_met.jsonl
- split: xnli_test_nonrelevant
path : interpretation/source_datasets/xnli_test_nonrelevant.jsonl
---
# Dataset Card for Dataset Name
Meta4XNLI is a parallel dataset with annotations in English and Spanish for metaphor detection at token level (13320 sentences) and metaphor interpretation framed within NLI the task (9990 premise-hypothesis pairs).
It is a collection of existing NLI datasets manually labeled for both metaphor tasks.
- **Repository**: data available also in .tsv format at https://github.com/elisanchez-beep/meta4xnli
- **Paper**: [Meta4XNLI: A Crosslingual Parallel Corpus for Metaphor Detection and Interpretation](https://arxiv.org/pdf/2404.07053.pdf)
### Dataset Sources
Meta4XNLI is a collection of [XNLI](xnli) and [esXNLI](https://aclanthology.org/2020.emnlp-main.618/) datasets with metaphor annotations.
## Dataset Structure
The dataset is divided according to detection and interpretation tasks.
- Detection: labels at token level.
- splits: train, dev and test files for fine-tuning and evaluation.
- source_datasets: splits by original source dataset and premises and hypotheses for evaluation.
- Intepretation: set of sentences split by metaphor occurrence. Non-relevant cases include sentences with metaphors, however, their literal interpretation is not necessary to extract the inference label.
- splits: train, dev and test files for fine-tuning and evaluation.
- source_datasets: splits by original source dataset and metaphor presence.
## Dataset Fields
- Detection:
- "id": example id
- "tokens": list of text split.
- "tags": list of metaphor annotations for each token.
- 0: literal
- 1: metaphor
- Interpretation:
- "language": Spanish (es) or English (en)
- "gold_label": inference label: entailment, neutral or contradiction
- "sentence1": premise
- "sentence2": hypothesis
- "promptID": premise id
- "pairID": premise and hypothesis pair id
- "genre": text domain
- "source_dataset": original dataset: {xnli.dev, xnli.test, esxnli}
## Citation [optional]
If you use Meta4XNLI, please cite our work:
```
@misc{sanchezbayona2024meta4xnli,
title={Meta4XNLI: A Crosslingual Parallel Corpus for Metaphor Detection and Interpretation},
author={Elisa Sanchez-Bayona and Rodrigo Agerri},
year={2024},
eprint={2404.07053},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Dataset Card Contact
{elisa.sanchez, rodrigo.agerri}@ehu.eus |