Datasets:
File size: 12,598 Bytes
3d22d5c 4eb2386 3d22d5c 0bf91c9 97c59d9 b309e53 97c59d9 26bb1c4 3d22d5c 457e83c 3d22d5c 9979ac5 3d22d5c a2f21da 3d22d5c a2f21da 0bf91c9 3d22d5c a2f21da 3d22d5c 455e49f 3d22d5c 04d05ee 3d22d5c 6ccbe48 3d22d5c 0bf91c9 3d22d5c db78d50 d21b1ef 34a458b 26bb1c4 b799f24 3d22d5c db78d50 3d22d5c 455e49f 3d22d5c 457e83c 3d22d5c 457e83c 49dccc7 457e83c 49dccc7 457e83c b8c4a0e a2f21da b8c4a0e 3d22d5c a2f21da 3d22d5c a2f21da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
---
license: cc
task_categories:
- text-generation
task_ids:
- language-modeling
pretty_name: ©️ Common Crawl Creative Commons
language:
- afr
- deu
- eng
- fra
- fry
- ita
- nld
- spa
- af
- de
- en
- fr
- fy
- it
- nl
- es
configs:
- config_name: default
data_files: data/**/*.parquet
# Languages
- config_name: afr
data_files: data/**/afr/*.parquet
- config_name: deu
data_files: data/**/deu/*.parquet
- config_name: eng
data_files: data/**/eng/*.parquet
- config_name: spa
data_files: data/**/spa/*.parquet
- config_name: fra
data_files: data/**/fra/*.parquet
- config_name: fry
data_files: data/**/fry/*.parquet
- config_name: ita
data_files: data/**/ita/*.parquet
- config_name: nld
data_files: data/**/nld/*.parquet
# Per-crawl
# CC-MAIN-2019-30
- config_name: CC-MAIN-2019-30
data_files: data/CC-MAIN-2019-30/**/*.parquet
- config_name: CC-MAIN-2019-30-afr
data_files: data/CC-MAIN-2019-30/afr/*.parquet
- config_name: CC-MAIN-2019-30-deu
data_files: data/CC-MAIN-2019-30/deu/*.parquet
- config_name: CC-MAIN-2019-30-eng
data_files: data/CC-MAIN-2019-30/eng/*.parquet
- config_name: CC-MAIN-2019-30-spa
data_files: data/CC-MAIN-2019-30/spa/*.parquet
- config_name: CC-MAIN-2019-30-fra
data_files: data/CC-MAIN-2019-30/fra/*.parquet
- config_name: CC-MAIN-2019-30-fry
data_files: data/CC-MAIN-2019-30/fry/*.parquet
- config_name: CC-MAIN-2019-30-ita
data_files: data/CC-MAIN-2019-30/ita/*.parquet
- config_name: CC-MAIN-2019-30-nld
data_files: data/CC-MAIN-2019-30/nld/*.parquet
# CC-MAIN-2020-05
- config_name: CC-MAIN-2020-05
data_files: data/CC-MAIN-2020-05/**/*.parquet
- config_name: CC-MAIN-2020-05-afr
data_files: data/CC-MAIN-2020-05/afr/*.parquet
- config_name: CC-MAIN-2020-05-deu
data_files: data/CC-MAIN-2020-05/deu/*.parquet
- config_name: CC-MAIN-2020-05-eng
data_files: data/CC-MAIN-2020-05/eng/*.parquet
- config_name: CC-MAIN-2020-05-spa
data_files: data/CC-MAIN-2020-05/spa/*.parquet
- config_name: CC-MAIN-2020-05-fra
data_files: data/CC-MAIN-2020-05/fra/*.parquet
- config_name: CC-MAIN-2020-05-fry
data_files: data/CC-MAIN-2020-05/fry/*.parquet
- config_name: CC-MAIN-2020-05-ita
data_files: data/CC-MAIN-2020-05/ita/*.parquet
- config_name: CC-MAIN-2020-05-nld
data_files: data/CC-MAIN-2020-05/nld/*.parquet
# CC-MAIN-2023-06
- config_name: CC-MAIN-2023-06
data_files: data/CC-MAIN-2023-06/**/*.parquet
- config_name: CC-MAIN-2023-06-afr
data_files: data/CC-MAIN-2023-06/afr/*.parquet
- config_name: CC-MAIN-2023-06-deu
data_files: data/CC-MAIN-2023-06/deu/*.parquet
- config_name: CC-MAIN-2023-06-eng
data_files: data/CC-MAIN-2023-06/eng/*.parquet
- config_name: CC-MAIN-2023-06-spa
data_files: data/CC-MAIN-2023-06/spa/*.parquet
- config_name: CC-MAIN-2023-06-fra
data_files: data/CC-MAIN-2023-06/fra/*.parquet
- config_name: CC-MAIN-2023-06-fry
data_files: data/CC-MAIN-2023-06/fry/*.parquet
- config_name: CC-MAIN-2023-06-ita
data_files: data/CC-MAIN-2023-06/ita/*.parquet
- config_name: CC-MAIN-2023-06-nld
data_files: data/CC-MAIN-2023-06/nld/*.parquet
# CC-MAIN-2024-51
- config_name: CC-MAIN-2024-51
data_files: data/CC-MAIN-2024-51/**/*.parquet
- config_name: CC-MAIN-2024-51-afr
data_files: data/CC-MAIN-2024-51/afr/*.parquet
- config_name: CC-MAIN-2024-51-deu
data_files: data/CC-MAIN-2024-51/deu/*.parquet
- config_name: CC-MAIN-2024-51-eng
data_files: data/CC-MAIN-2024-51/eng/*.parquet
- config_name: CC-MAIN-2024-51-spa
data_files: data/CC-MAIN-2024-51/spa/*.parquet
- config_name: CC-MAIN-2024-51-fra
data_files: data/CC-MAIN-2024-51/fra/*.parquet
- config_name: CC-MAIN-2024-51-fry
data_files: data/CC-MAIN-2024-51/fry/*.parquet
- config_name: CC-MAIN-2024-51-ita
data_files: data/CC-MAIN-2024-51/ita/*.parquet
- config_name: CC-MAIN-2024-51-nld
data_files: data/CC-MAIN-2024-51/nld/*.parquet
# CC-MAIN-2024-46
- config_name: CC-MAIN-2024-46
data_files: data/CC-MAIN-2024-46/**/*.parquet
- config_name: CC-MAIN-2024-46-afr
data_files: data/CC-MAIN-2024-46/afr/*.parquet
- config_name: CC-MAIN-2024-46-deu
data_files: data/CC-MAIN-2024-46/deu/*.parquet
- config_name: CC-MAIN-2024-46-eng
data_files: data/CC-MAIN-2024-46/eng/*.parquet
- config_name: CC-MAIN-2024-46-spa
data_files: data/CC-MAIN-2024-46/spa/*.parquet
- config_name: CC-MAIN-2024-46-fra
data_files: data/CC-MAIN-2024-46/fra/*.parquet
- config_name: CC-MAIN-2024-46-fry
data_files: data/CC-MAIN-2024-46/fry/*.parquet
- config_name: CC-MAIN-2024-46-ita
data_files: data/CC-MAIN-2024-46/ita/*.parquet
- config_name: CC-MAIN-2024-46-nld
data_files: data/CC-MAIN-2024-46/nld/*.parquet
---
> **Raw CommonCrawl crawls, annotated with potential Creative Commons license information**
**The licensing information is extracted from the web pages based on whether they link to Creative Commons licenses but false positives may occur!** While further filtering based on the location type of the license should improve the precision (e.g. by removing hyperlink (a_tag) references), false positives may still occur. **See Recommendations and Caveats below!**
## Code
I am very grateful to the Flemish Supercomputer to provide compute necessary to create this dataset, but as you can tell there is still a lot of data left to be processed. Therefore, I am happy to collaborate to process as many Common Crawl crawls as possible. [Shoot me a message](mailto:bram.vanroy@kuleuven.be) if you want to sponsor this project with compute! You can also simply run the code yourself if you'd like. You can find the whole code base, based on `datatrove`, on [Github](https://github.com/BramVanroy/CommonCrawl-CreativeCommons). If you use the code, please [reference my work](https://github.com/BramVanroy/CommonCrawl-CreativeCommons?tab=readme-ov-file#citation) accordingly and share your processed crawls with the rest of the world (or get in touch with me so I can add them to this repo).
## Usage
```python
from datasets import load_dataset
# Everything -- massive, you will need streaming
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", streaming=True)
# Single dump, all languages -- large, you may need streaming on non-server hardware
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "CC-MAIN-2019-30")
# Single language, all dumps -- very large, you will likely need streaming
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "nld", streaming=True)
# Single language, single dump
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "CC-MAIN-2019-30-nld")
```
## Fields
In some cases, multiple licenses are found on a single page. All licenses are collected in `potential_licenses`. From these, the "best guess" is selected
based on three criteria:
1. location_preference_order: meta_tag, json-ld, link_tag, a_tag
2. head_preference_order: True, False
3. footer_preference_order: True, False
Based on these criteria, the "best guessed" license is picked as the one in the `license_*` columns. Potential disagreement between multiple licenses is given in `license_disagreement`.
- text: the extracted text (unmodified)
- id: WARC-Record-ID
- dump: Common Crawl crawl
- url: original url for document
- date: crawl date
- file_path: file path on the S3 bucket
- license_abbr: the license type. Possible values: "cc-unknown" (recommended to filter this one out), "by", "by-sa", "by-nd", "by-nc", "by-nc-sa", "by-nc-nd", "zero", "certification", "mark". If multiple licenses were found (`potential_licenses`)
- license_version: the license version, e.g. "4.0"
- license_location: the location where the license was found. Possible values: "meta_tag", "json-ld", "link_tag", "a_tag"
- license_in_head: whether the license was found inside a `head` HTML element
- license_in_footer: whether the license was found inside a `footer` HTML element, or an HTML element that had `footer` in the ID or class name
- potential_licenses:
- abbr: list of all found license abbreviations
- version: list of all found license versions
- location: list of all found license locations
- in_head: list of whether licenses were found in the head
- in_footer: list of whether licenses were found in a footer
- license_parse_error: whether there was a problem when trying to extract the license, e.g. an unparseable HTML document
- license_disagreement: whether the `potential_licenses["abbr"]` disagree, i.e., different types of licenses were found. License *versions* are not included in the comparison!
- language: the language, as detected by glotlid
- language_score: the language identification confidence score
- found_in_fw: whether this sample was found in FineWeb(-2). For non-English, crawls that are more recent than FW2 (everything after 2024-18) is marked as None. For English, crawls that are more recent than FW v1.3 is marked as None (after 2024-51).
## Progress
The attempt is to at least process all five RedPyjama crawls + `CC-MAIN-2019-30`.
Done:
- CC-MAIN-2019-30
- CC-MAIN-2020-05
- CC-MAIN-2023-06
- CC-MAIN-2024-51
- CC-MAIN-2024-46
- CC-MAIN-2025-05
Running:
- CC-MAIN-2021-04
- CC-MAIN-2022-05
## Languages
The following languages are included.
- Afrikaans: afr
- German: deu
- English: eng
- French: fra
- Frysian: fry
- Italian: ita
- Dutch: nld
- Spanish: spa
## Recommendations and Caveats
- Raw CommonCrawl data is processed in an attempt to extract licensing information. No quality filtering is done!! It is **highly** recommended to filter this data further on quality, fluency, toxicity, etc.
- Similarly, the data has **not been deduplicated**.
- The licenses include all possible Creative Commons licenses, including non-commercial ones. Take care about what kind of data you wish to use, and filter out non-commercial licenses when needed.
- The column `license_disagreement` indicates whether multiple licenses were found that have not the same abbreviation, e.g. `cc-by` and `cc-by-nc`. It is recommended to filter these out.
- The column `license_parse_error` indicates whether an error occurred when parsing the license. You probably want to filter out documents where this was the case, though this should be extremely rare.
- Unsurpisingly, the data contains a lot of Wikipedia/Wikimedia content. Depending on what you need, you may wish to filter those out. For Wikipedia specifically, you may opt to use the more thoroughly parsed (but potentially more outdated) [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) set.
- In exceptional cases, a link to creativecommons.org is found but the exact license could not be found. These are under `license_abbr="cc-unknown"` which you may wish to filter out.
Recommendation:
```python
from datasets import load_dataset
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "CC-MAIN-2019-30", split="train")
ds = ds.filter(
lambda x: (
(not x["license_disagreement"]) and # Only use pages with a consistent license
x["found_in_fw"] and # Only use pages that are in FineWeb(-2)
"nc" not in x["license_abbr"] and # Exclude non-commercial licenses
x["license_abbr"] != "cc-unknown" and # Exclude unknown licenses
"wiki" not in x["url"] # Exclude Wiki-like pages (best to get those from a more reliable parser)
),
num_proc=16
)
```
## Citation
```bibtex
@software{Vanroy_CommonCrawl-CreativeCommons_2025,
author = {Vanroy, Bram},
license = {GPL-3.0},
month = feb,
title = {{CommonCrawl-CreativeCommons}},
url = {https://github.com/BramVanroy/CommonCrawl-CreativeCommons},
version = {1.3.0},
year = {2025}
}
```
## Acknowledgments
- The [Common Crawl](https://commoncrawl.org/) non-profit organization.
- [TNO](https://www.tno.nl/nl/), who funded the work hours to accomplish this code. They intend to use (parts of) [the generated material](https://huggingface.co/datasets/BramVanroy/CommonCrawl-CreativeCommons) for the [GPT-NL project](https://gpt-nl.nl/).
- [Flemish Supercomputer Center](https://www.vscentrum.be/) for part of the compute under grant 2024-107
- Guilherme Penedo ([@guipenedo](https://huggingface.co/guipenedo)) and the rest of the [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) and [datatrove](https://github.com/huggingface/datatrove) team for the help and insights
- ML6 and specifically Robin Van Craenenbroek for their [Fondant Creative Commons](https://github.com/ml6team/fondant-usecase-filter-creative-commons/tree/add-fondant-usecase-cc-image-extraction) filter for image datasets. While my approach is different, their code did serve as inspiration.
|