File size: 12,598 Bytes
3d22d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eb2386
 
 
 
 
 
 
 
3d22d5c
 
 
0bf91c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97c59d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b309e53
97c59d9
 
 
 
 
 
 
 
 
 
 
 
 
 
26bb1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d22d5c
 
 
 
457e83c
3d22d5c
9979ac5
 
 
 
3d22d5c
 
 
 
 
a2f21da
 
3d22d5c
a2f21da
0bf91c9
3d22d5c
a2f21da
 
3d22d5c
 
455e49f
3d22d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04d05ee
3d22d5c
6ccbe48
3d22d5c
 
 
 
0bf91c9
3d22d5c
 
 
db78d50
d21b1ef
34a458b
 
26bb1c4
b799f24
3d22d5c
 
 
db78d50
3d22d5c
 
 
 
 
 
455e49f
 
 
 
 
 
 
 
3d22d5c
 
457e83c
3d22d5c
 
 
 
 
 
 
 
 
457e83c
 
 
 
 
 
 
 
 
 
49dccc7
 
 
 
 
457e83c
49dccc7
457e83c
 
 
 
b8c4a0e
 
 
 
 
 
 
 
 
a2f21da
b8c4a0e
 
 
 
 
3d22d5c
 
a2f21da
 
3d22d5c
 
a2f21da
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
---
license: cc
task_categories:
- text-generation
task_ids:
- language-modeling
pretty_name: ©️ Common Crawl Creative Commons
language:
- afr
- deu
- eng
- fra
- fry
- ita
- nld
- spa
- af
- de
- en
- fr
- fy
- it
- nl
- es
configs:
- config_name: default
  data_files: data/**/*.parquet
# Languages
- config_name: afr
  data_files: data/**/afr/*.parquet
- config_name: deu
  data_files: data/**/deu/*.parquet
- config_name: eng
  data_files: data/**/eng/*.parquet
- config_name: spa
  data_files: data/**/spa/*.parquet
- config_name: fra
  data_files: data/**/fra/*.parquet
- config_name: fry
  data_files: data/**/fry/*.parquet
- config_name: ita
  data_files: data/**/ita/*.parquet
- config_name: nld
  data_files: data/**/nld/*.parquet
# Per-crawl
# CC-MAIN-2019-30
- config_name: CC-MAIN-2019-30
  data_files: data/CC-MAIN-2019-30/**/*.parquet
- config_name: CC-MAIN-2019-30-afr
  data_files: data/CC-MAIN-2019-30/afr/*.parquet
- config_name: CC-MAIN-2019-30-deu
  data_files: data/CC-MAIN-2019-30/deu/*.parquet
- config_name: CC-MAIN-2019-30-eng
  data_files: data/CC-MAIN-2019-30/eng/*.parquet
- config_name: CC-MAIN-2019-30-spa
  data_files: data/CC-MAIN-2019-30/spa/*.parquet
- config_name: CC-MAIN-2019-30-fra
  data_files: data/CC-MAIN-2019-30/fra/*.parquet
- config_name: CC-MAIN-2019-30-fry
  data_files: data/CC-MAIN-2019-30/fry/*.parquet
- config_name: CC-MAIN-2019-30-ita
  data_files: data/CC-MAIN-2019-30/ita/*.parquet
- config_name: CC-MAIN-2019-30-nld
  data_files: data/CC-MAIN-2019-30/nld/*.parquet
# CC-MAIN-2020-05
- config_name: CC-MAIN-2020-05
  data_files: data/CC-MAIN-2020-05/**/*.parquet
- config_name: CC-MAIN-2020-05-afr
  data_files: data/CC-MAIN-2020-05/afr/*.parquet
- config_name: CC-MAIN-2020-05-deu
  data_files: data/CC-MAIN-2020-05/deu/*.parquet
- config_name: CC-MAIN-2020-05-eng
  data_files: data/CC-MAIN-2020-05/eng/*.parquet
- config_name: CC-MAIN-2020-05-spa
  data_files: data/CC-MAIN-2020-05/spa/*.parquet
- config_name: CC-MAIN-2020-05-fra
  data_files: data/CC-MAIN-2020-05/fra/*.parquet
- config_name: CC-MAIN-2020-05-fry
  data_files: data/CC-MAIN-2020-05/fry/*.parquet
- config_name: CC-MAIN-2020-05-ita
  data_files: data/CC-MAIN-2020-05/ita/*.parquet
- config_name: CC-MAIN-2020-05-nld
  data_files: data/CC-MAIN-2020-05/nld/*.parquet
# CC-MAIN-2023-06
- config_name: CC-MAIN-2023-06
  data_files: data/CC-MAIN-2023-06/**/*.parquet
- config_name: CC-MAIN-2023-06-afr
  data_files: data/CC-MAIN-2023-06/afr/*.parquet
- config_name: CC-MAIN-2023-06-deu
  data_files: data/CC-MAIN-2023-06/deu/*.parquet
- config_name: CC-MAIN-2023-06-eng
  data_files: data/CC-MAIN-2023-06/eng/*.parquet
- config_name: CC-MAIN-2023-06-spa
  data_files: data/CC-MAIN-2023-06/spa/*.parquet
- config_name: CC-MAIN-2023-06-fra
  data_files: data/CC-MAIN-2023-06/fra/*.parquet
- config_name: CC-MAIN-2023-06-fry
  data_files: data/CC-MAIN-2023-06/fry/*.parquet
- config_name: CC-MAIN-2023-06-ita
  data_files: data/CC-MAIN-2023-06/ita/*.parquet
- config_name: CC-MAIN-2023-06-nld
  data_files: data/CC-MAIN-2023-06/nld/*.parquet
# CC-MAIN-2024-51
- config_name: CC-MAIN-2024-51
  data_files: data/CC-MAIN-2024-51/**/*.parquet
- config_name: CC-MAIN-2024-51-afr
  data_files: data/CC-MAIN-2024-51/afr/*.parquet
- config_name: CC-MAIN-2024-51-deu
  data_files: data/CC-MAIN-2024-51/deu/*.parquet
- config_name: CC-MAIN-2024-51-eng
  data_files: data/CC-MAIN-2024-51/eng/*.parquet
- config_name: CC-MAIN-2024-51-spa
  data_files: data/CC-MAIN-2024-51/spa/*.parquet
- config_name: CC-MAIN-2024-51-fra
  data_files: data/CC-MAIN-2024-51/fra/*.parquet
- config_name: CC-MAIN-2024-51-fry
  data_files: data/CC-MAIN-2024-51/fry/*.parquet
- config_name: CC-MAIN-2024-51-ita
  data_files: data/CC-MAIN-2024-51/ita/*.parquet
- config_name: CC-MAIN-2024-51-nld
  data_files: data/CC-MAIN-2024-51/nld/*.parquet
  # CC-MAIN-2024-46
- config_name: CC-MAIN-2024-46
  data_files: data/CC-MAIN-2024-46/**/*.parquet
- config_name: CC-MAIN-2024-46-afr
  data_files: data/CC-MAIN-2024-46/afr/*.parquet
- config_name: CC-MAIN-2024-46-deu
  data_files: data/CC-MAIN-2024-46/deu/*.parquet
- config_name: CC-MAIN-2024-46-eng
  data_files: data/CC-MAIN-2024-46/eng/*.parquet
- config_name: CC-MAIN-2024-46-spa
  data_files: data/CC-MAIN-2024-46/spa/*.parquet
- config_name: CC-MAIN-2024-46-fra
  data_files: data/CC-MAIN-2024-46/fra/*.parquet
- config_name: CC-MAIN-2024-46-fry
  data_files: data/CC-MAIN-2024-46/fry/*.parquet
- config_name: CC-MAIN-2024-46-ita
  data_files: data/CC-MAIN-2024-46/ita/*.parquet
- config_name: CC-MAIN-2024-46-nld
  data_files: data/CC-MAIN-2024-46/nld/*.parquet
---

> **Raw CommonCrawl crawls, annotated with potential Creative Commons license information**

**The licensing information is extracted from the web pages based on whether they link to Creative Commons licenses but false positives may occur!** While further filtering based on the location type of the license should improve the precision (e.g. by removing hyperlink (a_tag) references), false positives may still occur. **See Recommendations and Caveats below!**

## Code

I am very grateful to the Flemish Supercomputer to provide compute necessary to create this dataset, but as you can tell there is still a lot of data left to be processed. Therefore, I am happy to collaborate to process as many Common Crawl crawls as possible. [Shoot me a message](mailto:bram.vanroy@kuleuven.be) if you want to sponsor this project with compute! You can also simply run the code yourself if you'd like. You can find the whole code base, based on `datatrove`, on [Github](https://github.com/BramVanroy/CommonCrawl-CreativeCommons). If you use the code, please [reference my work](https://github.com/BramVanroy/CommonCrawl-CreativeCommons?tab=readme-ov-file#citation) accordingly and share your processed crawls with the rest of the world (or get in touch with me so I can add them to this repo).

## Usage

```python
from datasets import load_dataset

# Everything -- massive, you will need streaming
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", streaming=True)

# Single dump, all languages -- large, you may need streaming on non-server hardware
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "CC-MAIN-2019-30")

# Single language, all dumps -- very large, you will likely need streaming
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "nld", streaming=True)

# Single language, single dump
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "CC-MAIN-2019-30-nld")
```

## Fields

In some cases, multiple licenses are found on a single page. All licenses are collected in `potential_licenses`. From these, the "best guess" is selected
based on three criteria:

1. location_preference_order: meta_tag, json-ld, link_tag, a_tag
2. head_preference_order: True, False
3. footer_preference_order: True, False

Based on these criteria, the "best guessed" license is picked as the one in the `license_*` columns. Potential disagreement between multiple licenses is given in `license_disagreement`.

- text: the extracted text (unmodified)
- id: WARC-Record-ID
- dump: Common Crawl crawl
- url: original url for document
- date: crawl date
- file_path: file path on the S3 bucket
- license_abbr: the license type. Possible values: "cc-unknown" (recommended to filter this one out), "by", "by-sa", "by-nd", "by-nc", "by-nc-sa", "by-nc-nd", "zero", "certification", "mark". If multiple licenses were found (`potential_licenses`) 
- license_version: the license version, e.g. "4.0"
- license_location: the location where the license was found. Possible values: "meta_tag", "json-ld", "link_tag", "a_tag"
- license_in_head: whether the license was found inside a `head` HTML element
- license_in_footer: whether the license was found inside a `footer` HTML element, or an HTML element that had `footer` in the ID or class name
- potential_licenses:
  - abbr: list of all found license abbreviations
  - version: list of all found license versions
  - location: list of all found license locations
  - in_head: list of whether licenses were found in the head
  - in_footer: list of whether licenses were found in a footer
- license_parse_error: whether there was a problem when trying to extract the license, e.g. an unparseable HTML document
- license_disagreement: whether the `potential_licenses["abbr"]` disagree, i.e., different types of licenses were found. License *versions* are not included in the comparison!
- language: the language, as detected by glotlid
- language_score: the language identification confidence score
- found_in_fw: whether this sample was found in FineWeb(-2). For non-English, crawls that are more recent than FW2 (everything after 2024-18) is marked as None. For English, crawls that are more recent than FW v1.3 is marked as None (after 2024-51).


## Progress

The attempt is to at least process all five RedPyjama crawls + `CC-MAIN-2019-30`. 

Done:

- CC-MAIN-2019-30
- CC-MAIN-2020-05
- CC-MAIN-2023-06
- CC-MAIN-2024-51
- CC-MAIN-2024-46
- CC-MAIN-2025-05

Running:

- CC-MAIN-2021-04
- CC-MAIN-2022-05

## Languages

The following languages are included.

- Afrikaans: afr
- German: deu
- English: eng
- French: fra
- Frysian: fry
- Italian: ita
- Dutch: nld
- Spanish: spa


## Recommendations and Caveats

- Raw CommonCrawl data is processed in an attempt to extract licensing information. No quality filtering is done!! It is **highly** recommended to filter this data further on quality, fluency, toxicity, etc.
- Similarly, the data has **not been deduplicated**. 
- The licenses include all possible Creative Commons licenses, including non-commercial ones. Take care about what kind of data you wish to use, and filter out non-commercial licenses when needed.
- The column `license_disagreement` indicates whether multiple licenses were found that have not the same abbreviation, e.g. `cc-by` and `cc-by-nc`. It is recommended to filter these out.
- The column `license_parse_error` indicates whether an error occurred when parsing the license. You probably want to filter out documents where this was the case, though this should be extremely rare.
- Unsurpisingly, the data contains a lot of Wikipedia/Wikimedia content. Depending on what you need, you may wish to filter those out. For Wikipedia specifically, you may opt to use the more thoroughly parsed (but potentially more outdated) [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) set.
- In exceptional cases, a link to creativecommons.org is found but the exact license could not be found. These are under `license_abbr="cc-unknown"` which you may wish to filter out.


Recommendation:

```python
from datasets import load_dataset


ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "CC-MAIN-2019-30", split="train")
ds = ds.filter(
    lambda x: (
        (not x["license_disagreement"]) and    # Only use pages with a consistent license
        x["found_in_fw"] and                   # Only use pages that are in FineWeb(-2)
        "nc" not in x["license_abbr"] and      # Exclude non-commercial licenses
        x["license_abbr"] != "cc-unknown" and  # Exclude unknown licenses
        "wiki" not in x["url"]                 # Exclude Wiki-like pages (best to get those from a more reliable parser)
    ), 
    num_proc=16
)
```


## Citation

```bibtex
@software{Vanroy_CommonCrawl-CreativeCommons_2025,
  author = {Vanroy, Bram},
  license = {GPL-3.0},
  month = feb,
  title = {{CommonCrawl-CreativeCommons}},
  url = {https://github.com/BramVanroy/CommonCrawl-CreativeCommons},
  version = {1.3.0},
  year = {2025}
}
```


## Acknowledgments

- The [Common Crawl](https://commoncrawl.org/) non-profit organization. 
- [TNO](https://www.tno.nl/nl/), who funded the work hours to accomplish this code. They intend to use (parts of) [the generated material](https://huggingface.co/datasets/BramVanroy/CommonCrawl-CreativeCommons) for the [GPT-NL project](https://gpt-nl.nl/).
- [Flemish Supercomputer Center](https://www.vscentrum.be/) for part of the compute under grant 2024-107
- Guilherme Penedo ([@guipenedo](https://huggingface.co/guipenedo)) and the rest of the [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) and [datatrove](https://github.com/huggingface/datatrove) team for the help and insights
- ML6 and specifically Robin Van Craenenbroek for their [Fondant Creative Commons](https://github.com/ml6team/fondant-usecase-filter-creative-commons/tree/add-fondant-usecase-cc-image-extraction) filter for image datasets. While my approach is different, their code did serve as inspiration.