Datasets:
File size: 8,197 Bytes
3d22d5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
license: cc
task_categories:
- text-generation
task_ids:
- language-modeling
pretty_name: ©️ Common Crawl Creative Commons
language:
- afr
- deu
- eng
- fra
- fry
- ita
- nld
- spa
configs:
- config_name: CC-MAIN-2024-51
data_files: data/CC-MAIN-2024-51/**/*.parquet
- config_name: CC-MAIN-2024-51-af
data_files:
- split: train
path: data/CC-MAIN-2024-51/af/train-*
- config_name: CC-MAIN-2024-51-de
data_files: data/CC-MAIN-2024-51/de/*.parquet
- config_name: CC-MAIN-2024-51-en
data_files: data/CC-MAIN-2024-51/en/*.parquet
- config_name: CC-MAIN-2024-51-es
data_files: data/CC-MAIN-2024-51/es/*.parquet
- config_name: CC-MAIN-2024-51-fr
data_files: data/CC-MAIN-2024-51/fr/*.parquet
- config_name: CC-MAIN-2024-51-fy
data_files: data/CC-MAIN-2024-51/fy/*.parquet
- config_name: CC-MAIN-2024-51-it
data_files: data/CC-MAIN-2024-51/it/*.parquet
- config_name: CC-MAIN-2024-51-nl
data_files: data/CC-MAIN-2024-51/nl/*.parquet
- config_name: af
data_files: data/**/af/*.parquet
- config_name: de
data_files: data/**/de/*.parquet
- config_name: default
data_files: data/**/*.parquet
- config_name: en
data_files: data/**/en/*.parquet
- config_name: es
data_files: data/**/es/*.parquet
- config_name: fr
data_files: data/**/fr/*.parquet
- config_name: fy
data_files: data/**/fy/*.parquet
- config_name: it
data_files: data/**/it/*.parquet
- config_name: nl
data_files: data/**/nl/*.parquet
dataset_info:
config_name: CC-MAIN-2024-51-af
features:
- name: text
dtype: string
- name: id
dtype: string
- name: dump
dtype: string
- name: url
dtype: string
- name: date
dtype: string
- name: file_path
dtype: string
- name: license_abbr
dtype: string
- name: license_version
dtype: string
- name: license_location
dtype: string
- name: license_in_head
dtype: bool
- name: license_in_footer
dtype: bool
- name: potential_licenses
struct:
- name: abbr
sequence: string
- name: in_footer
sequence: bool
- name: in_head
sequence: bool
- name: location
sequence: string
- name: version
sequence: string
- name: license_parse_error
dtype: bool
- name: license_disagreement
dtype: bool
- name: language
dtype: string
- name: language_score
dtype: float64
- name: in_fw2
dtype: bool
splits:
- name: train
num_bytes: 75356511
num_examples: 17733
download_size: 41860751
dataset_size: 75356511
---
> **Raw CommonCrawl crawls, annotated with potential Creative Commons license information**
**The licensing information is extracted from the web pages based on whether they link to Creative Commons licenses but false positives may occur!** While further filtering based on the location type of the license should improve the precision (e.g. by removing hyperlink (a_tag) references), false positives may still occur.
## Usage
```python
from datasets import load_dataset
# Everything
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons")
# Single dump, all languages
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "CC-MAIN-2024-51")
# Single language, all dumps
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "nl")
# Single language, single dump
ds = load_dataset("BramVanroy/CommonCrawl-CreativeCommons", "CC-MAIN-2024-51-nl")
```
## Fields
In some cases, multiple licenses are found on a single page. All licenses are collected in `potential_licenses`. From these, the "best guess" is selected
based on three criteria:
1. location_preference_order: meta_tag, json-ld, link_tag, a_tag
2. head_preference_order: True, False
3. footer_preference_order: True, False
Based on these criteria, the "best guessed" license is picked as the one in the `license_*` columns. Potential disagreement between multiple licenses is given in `license_disagreement`.
- text: the extracted text (unmodified)
- id: WARC-Record-ID
- dump: Common Crawl crawl
- url: original url for document
- date: crawl date
- file_path: file path on the S3 bucket
- license_abbr: the license type. Possible values: "cc-unknown" (recommended to filter this one out), "by", "by-sa", "by-nd", "by-nc", "by-nc-sa", "by-nc-nd", "zero", "certification", "mark". If multiple licenses were found (`potential_licenses`)
- license_version: the license version, e.g. "4.0"
- license_location: the location where the license was found. Possible values: "meta_tag", "json-ld", "link_tag", "a_tag"
- license_in_head: whether the license was found inside a `head` HTML element
- license_in_footer: whether the license was found inside a `footer` HTML element, or an HTML element that had `footer` in the ID or class name
- potential_licenses:
- abbr: list of all found license abbreviations
- version: list of all found license versions
- location: list of all found license locations
- in_head: list of whether licenses were found in the head
- in_footer: list of whether licenses were found in a footer
- license_parse_error: whether there was a problem when trying to extract the license, e.g. an unparseable HTML document
- license_disagreement: whether the `potential_licenses["abbr"]` disagree, i.e., different types of licenses were found. License *versions* are not included in the comparison!
- language: the language, as detected by fastText `ft176`
- language_score: the language identification confidence score
- found_in_fw2: whether this sample was found in FineWeb-2. Crawls that are more recent than FW2 (everything after 2024-18) is marked as None
## Progress
The attempt is to at least process all five RedPyjama crawls + `CC-MAIN-2024-51`.
Done:
- CC-MAIN-2024-51
Running:
- CC-MAIN-2019-30
To do:
- CC-MAIN-2019-30
- CC-MAIN-2020-05
- CC-MAIN-2021-04
- CC-MAIN-2022-05
- CC-MAIN-2023-06
- CC-MAIN-2024-51
## Languages
The following languages are included.
- afr_Latn
- deu_Latn
- eng_Latn
- fra_Latn
- fry_Latn
- ita_Latn
- nld_Latn
- spa_Latn
## Recommendations
- Raw CommonCrawl data is processed in an attempt to extract licensing information. No quality filtering is done!! It is **highly** recommended to filter this data further on quality, fluency, toxicity, etc.
- Similarly, the data has **not been deduplicated**.
- The licenses include all possible Creative Commons licenses, including non-commercial ones. Take care about what kind of data you wish to use, and filter out non-commercial licenses when needed.
- The column `license_disagreement` indicates whether multiple licenses were found that have not the same abbreviation, e.g. `cc-by` and `cc-by-nc`. It is recommended to filter these out.
- The column `license_parse_error` indicates whether an error occurred when parsing the license. You probably want to filter out documents where this was the case, though this should be extremely rare.
- Unsurpisingly, the data contains a lot of Wikipedia/Wikimedia content. Depending on what you need, you may wish to filter those out. For Wikipedia specifically, you may opt to use the more thoroughly parsed (but potentially more outdated) [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) set.
- In exceptional cases, a link to creativecommons.org is found but the exact license could not be found. These are under `license_abbr="cc-unknown"` which you may wish to filter out.
## Acknowledgments
- [TNO](https://www.tno.nl/nl/), who funded the work hours to accomplish this collection. They intend to use parts of this material for the [GPT-NL project](https://gpt-nl.nl/).
- [Flemish Supercomputer Center](https://www.vscentrum.be/) for part of the compute under grant 2024-107
- Guilherme Penedo ([@guipenedo](https://huggingface.co/guipenedo)) and the rest of the [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) and [datatrove](https://github.com/huggingface/datatrove) team for the help and insights
- ML6 and specifically Robin Van Craenenbroek for their [Fondant Creative Commons](https://github.com/ml6team/fondant-usecase-filter-creative-commons/tree/add-fondant-usecase-cc-image-extraction) filter for image datasets. While my approach is different, their code did serve as inspiration. |