--- dataset_info: - config_name: cc-by features: - name: id dtype: string - name: idx dtype: int64 - name: paragraph dtype: string splits: - name: train num_bytes: 151115318 num_examples: 139463 download_size: 76199216 dataset_size: 151115318 - config_name: cc-by-nc features: - name: id dtype: string - name: idx dtype: int64 - name: paragraph dtype: string splits: - name: train num_bytes: 78538396 num_examples: 69457 download_size: 39741294 dataset_size: 78538396 configs: - config_name: cc-by data_files: - split: train path: cc-by/train-* - config_name: cc-by-nc data_files: - split: train path: cc-by-nc/train-* --- # ChemRxiv Paragraphs This dataset consists of paragraphs from ChemRxiv papers with **CC BY 4.0** and **CC BY-NC 4.0** licenses, sourced from the [BASF-AI/ChemRxiv-Papers](https://huggingface.co/datasets/BASF-AI/ChemRxiv-Papers) dataset. Paragraphs are extracted using [Grobid](https://github.com/kermitt2/grobid), and filtered using an average log word probability method similar to the approach in [allenai/peS2o](https://huggingface.co/datasets/allenai/peS2o). Paragraphs with fewer than 50 words are excluded. The number of unique papers in each license category is as follows: - **CC BY 4.0:** 5,848 papers - **CC BY-NC 4.0:** 3,082 papers To obtain metadata for each paper, join on the `id` column with the [BASF-AI/ChemRxiv-Papers](https://huggingface.co/datasets/BASF-AI/ChemRxiv-Papers) dataset. To access paragraphs for a specific license, use the `name` argument as follows: ```python import datasets cc_by = datasets.load_dataset('BASF-AI/ChemRxiv-Paragraphs', name='cc-by') cc_by_nc = datasets.load_dataset('BASF-AI/ChemRxiv-Paragraphs', name='cc-by-nc') ```