-
EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters
Paper • 2402.04252 • Published • 28 -
Vision Superalignment: Weak-to-Strong Generalization for Vision Foundation Models
Paper • 2402.03749 • Published • 14 -
ScreenAI: A Vision-Language Model for UI and Infographics Understanding
Paper • 2402.04615 • Published • 44 -
EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss
Paper • 2402.05008 • Published • 23
Collections
Discover the best community collections!
Collections including paper arxiv:2509.25190
-
Describe What You See with Multimodal Large Language Models to Enhance Video Recommendations
Paper • 2508.09789 • Published • 5 -
MM-BrowseComp: A Comprehensive Benchmark for Multimodal Browsing Agents
Paper • 2508.13186 • Published • 18 -
ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Paper • 2508.04038 • Published • 1 -
Prompt Orchestration Markup Language
Paper • 2508.13948 • Published • 48
-
Analyzing The Language of Visual Tokens
Paper • 2411.05001 • Published • 24 -
Large Multi-modal Models Can Interpret Features in Large Multi-modal Models
Paper • 2411.14982 • Published • 19 -
Rethinking Token Reduction in MLLMs: Towards a Unified Paradigm for Training-Free Acceleration
Paper • 2411.17686 • Published • 20 -
On the Limitations of Vision-Language Models in Understanding Image Transforms
Paper • 2503.09837 • Published • 10
-
A Survey on Vision-Language-Action Models: An Action Tokenization Perspective
Paper • 2507.01925 • Published • 38 -
Zebra-CoT: A Dataset for Interleaved Vision Language Reasoning
Paper • 2507.16746 • Published • 34 -
MolmoAct: Action Reasoning Models that can Reason in Space
Paper • 2508.07917 • Published • 43 -
Discrete Diffusion VLA: Bringing Discrete Diffusion to Action Decoding in Vision-Language-Action Policies
Paper • 2508.20072 • Published • 29
-
EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters
Paper • 2402.04252 • Published • 28 -
Vision Superalignment: Weak-to-Strong Generalization for Vision Foundation Models
Paper • 2402.03749 • Published • 14 -
ScreenAI: A Vision-Language Model for UI and Infographics Understanding
Paper • 2402.04615 • Published • 44 -
EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss
Paper • 2402.05008 • Published • 23
-
Describe What You See with Multimodal Large Language Models to Enhance Video Recommendations
Paper • 2508.09789 • Published • 5 -
MM-BrowseComp: A Comprehensive Benchmark for Multimodal Browsing Agents
Paper • 2508.13186 • Published • 18 -
ZARA: Zero-shot Motion Time-Series Analysis via Knowledge and Retrieval Driven LLM Agents
Paper • 2508.04038 • Published • 1 -
Prompt Orchestration Markup Language
Paper • 2508.13948 • Published • 48
-
A Survey on Vision-Language-Action Models: An Action Tokenization Perspective
Paper • 2507.01925 • Published • 38 -
Zebra-CoT: A Dataset for Interleaved Vision Language Reasoning
Paper • 2507.16746 • Published • 34 -
MolmoAct: Action Reasoning Models that can Reason in Space
Paper • 2508.07917 • Published • 43 -
Discrete Diffusion VLA: Bringing Discrete Diffusion to Action Decoding in Vision-Language-Action Policies
Paper • 2508.20072 • Published • 29
-
Analyzing The Language of Visual Tokens
Paper • 2411.05001 • Published • 24 -
Large Multi-modal Models Can Interpret Features in Large Multi-modal Models
Paper • 2411.14982 • Published • 19 -
Rethinking Token Reduction in MLLMs: Towards a Unified Paradigm for Training-Free Acceleration
Paper • 2411.17686 • Published • 20 -
On the Limitations of Vision-Language Models in Understanding Image Transforms
Paper • 2503.09837 • Published • 10