# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytorch_lightning as pl from nemo.collections.common.callbacks import LogEpochTimeCallback from nemo.collections.tts.models.radtts import RadTTSModel from nemo.core.config import hydra_runner from nemo.utils import logging from nemo.utils.exp_manager import exp_manager def freeze(model): for p in model.parameters(): p.requires_grad = False def unfreeze(model): for p in model.parameters(): p.requires_grad = True def prepare_model_weights(model, unfreeze_modules): if unfreeze_modules != 'all': model.freeze() # freeze everything logging.info("module freezed, about to unfreeze modules to be trained") if 'dur' in unfreeze_modules and hasattr(model.model, 'dur_pred_layer'): logging.info("Training duration prediction") unfreeze(model.model.dur_pred_layer) if 'f0' in unfreeze_modules and hasattr(model.model, 'f0_pred_module'): logging.info("Training F0 prediction") unfreeze(model.model.f0_pred_module) if 'energy' in unfreeze_modules and hasattr(model.model, 'energy_pred_module'): logging.info("Training energy prediction") unfreeze(model.model.energy_pred_module) if 'vpred' in unfreeze_modules and hasattr(model.model, 'v_pred_module'): logging.info("Training voiced prediction") unfreeze(model.model.v_pred_module) if hasattr(model, 'v_embeddings'): logging.info("Training voiced embeddings") unfreeze(model.model.v_embeddings) if 'unvbias' in unfreeze_modules and hasattr(model.model, 'unvoiced_bias_module'): logging.info("Training unvoiced bias") unfreeze(model.model.unvoiced_bias_module) else: logging.info("Training everything") @hydra_runner(config_path="conf", config_name="rad-tts_dec") def main(cfg): trainer = pl.Trainer(**cfg.trainer) exp_manager(trainer, cfg.get('exp_manager', None)) model = RadTTSModel(cfg=cfg.model, trainer=trainer).cuda() if cfg.model.load_from_checkpoint: model.maybe_init_from_pretrained_checkpoint(cfg=cfg.model) prepare_model_weights(model, cfg.model.trainerConfig.unfreeze_modules) lr_logger = pl.callbacks.LearningRateMonitor() epoch_time_logger = LogEpochTimeCallback() trainer.callbacks.extend([lr_logger, epoch_time_logger]) trainer.fit(model.cuda()) if __name__ == '__main__': main()