# BERT Pretraining from Preprocessed (tokenized) data name: &name PretrainingBERTFromPreprocessed trainer: devices: 8 # the number of gpus, 0 for CPU, or list with gpu indices num_nodes: 1 max_steps: 2285714 # precedence over max_epochs num_sanity_val_steps: 0 # needed for bert pretraining from preproc replace_sampler_ddp: false # needed for bert pretraining from preproc accumulate_grad_batches: 1 # accumulates grads every k batches precision: 16 # 16 to use AMP accelerator: gpu gradient_clip_val: 1.0 log_every_n_steps: 1 val_check_interval: 1.0 # check once per epoch .25 for 4 times per epoch enable_checkpointing: False # provided by exp_manager logger: false # provided by exp_manager model: nemo_path: null # exported .nemo path only_mlm_loss: true # only use masked language model without next sentence prediction num_tok_classification_layers: 1 # number of token classification head output layers num_seq_classification_layers: 2 # number of sequence classification head output layers language_model: pretrained_model_name: bert-base-uncased # huggingface model name lm_checkpoint: null config: attention_probs_dropout_prob: 0.1 hidden_act: gelu hidden_dropout_prob: 0.1 hidden_size: 768 initializer_range: 0.02 intermediate_size: 3072 max_position_embeddings: 512 num_attention_heads: 12 num_hidden_layers: 12 type_vocab_size: 2 vocab_size: 30522 config_file: null # json file, precedence over config tokenizer: null train_ds: data_file: ??? # path to hdf5 file (or directory) max_predictions_per_seq: 80 batch_size: 16 shuffle: true num_samples: -1 num_workers: 2 drop_last: false pin_memory: false optim: name: adamw lr: 0.4375e-4 weight_decay: 0.01 sched: name: SquareRootAnnealing warmup_steps: null warmup_ratio: 0.01 min_lr: 0.0 last_epoch: -1 exp_manager: exp_dir: null # where to store logs and checkpoints name: *name # name of experiment create_tensorboard_logger: True create_checkpoint_callback: True hydra: run: dir: . job_logging: root: handlers: null