@inproceedings{shen2018natural, title={Natural tts synthesis by conditioning wavenet on mel spectrogram predictions}, author={Shen, Jonathan and Pang, Ruoming and Weiss, Ron J and Schuster, Mike and Jaitly, Navdeep and Yang, Zongheng and Chen, Zhifeng and Zhang, Yu and Wang, Yuxuan and Skerrv-Ryan, Rj and others}, booktitle={2018 IEEE international conference on acoustics, speech and signal processing (ICASSP)}, pages={4779--4783}, year={2018}, organization={IEEE} } @inproceedings{lancucki2021fastpitch, title={Fastpitch: Parallel text-to-speech with pitch prediction}, author={{\L}a{\'n}cucki, Adrian}, booktitle={ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={6588--6592}, year={2021}, organization={IEEE} } @inproceedings{tatanov2022mixer, title={Mixer-TTS: non-autoregressive, fast and compact text-to-speech model conditioned on language model embeddings}, author={Tatanov, Oktai and Beliaev, Stanislav and Ginsburg, Boris}, booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7482--7486}, year={2022}, organization={IEEE} } @inproceedings{shih2021rad, title={RAD-TTS: Parallel flow-based TTS with robust alignment learning and diverse synthesis}, author={Shih, Kevin J and Valle, Rafael and Badlani, Rohan and Lancucki, Adrian and Ping, Wei and Catanzaro, Bryan}, booktitle={ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models}, year={2021} } @article{kong2020hifi, title={Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis}, author={Kong, Jungil and Kim, Jaehyeon and Bae, Jaekyoung}, journal={Advances in Neural Information Processing Systems}, volume={33}, pages={17022--17033}, year={2020} } @inproceedings{prenger2019waveglow, title={Waveglow: A flow-based generative network for speech synthesis}, author={Prenger, Ryan and Valle, Rafael and Catanzaro, Bryan}, booktitle={ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={3617--3621}, year={2019}, organization={IEEE} } @inproceedings{jang21_interspeech, author={Won Jang and Dan Lim and Jaesam Yoon and Bongwan Kim and Juntae Kim}, title={{UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation}}, year=2021, booktitle={Proc. Interspeech 2021}, pages={2207--2211}, doi={10.21437/Interspeech.2021-1016} } @inproceedings{badlani2022one, title={One TTS alignment to rule them all}, author={Badlani, Rohan and {\L}a{\'n}cucki, Adrian and Shih, Kevin J and Valle, Rafael and Ping, Wei and Catanzaro, Bryan}, booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={6092--6096}, year={2022}, organization={IEEE} } @article{xue2021byt5, title={ByT5: Towards a token-free future with pre-trained byte-to-byte models 2021}, author={Xue, Linting and Barua, Aditya and Constant, Noah and Al-Rfou, Rami and Narang, Sharan and Kale, Mihir and Roberts, Adam and Raffel, Colin}, journal={arXiv preprint arXiv:2105.13626}, year={2021} } @article{vrezavckova2021t5g2p, title={T5g2p: Using text-to-text transfer transformer for grapheme-to-phoneme conversion}, author={{\v{R}}ez{\'a}{\v{c}}kov{\'a}, Mark{\'e}ta and {\v{S}}vec, Jan and Tihelka, Daniel}, year={2021}, journal={International Speech Communication Association} } @article{zhu2022byt5, title={ByT5 model for massively multilingual grapheme-to-phoneme conversion}, author={Zhu, Jian and Zhang, Cong and Jurgens, David}, journal={arXiv preprint arXiv:2204.03067}, year={2022} } @article{ggulati2020conformer, title={Conformer: Convolution-augmented transformer for speech recognition}, author={Gulati, Anmol and Qin, James and Chiu, Chung-Cheng and Parmar, Niki and Zhang, Yu and Yu, Jiahui and Han, Wei and Wang, Shibo and Zhang, Zhengdong and Wu, Yonghui and others}, journal={arXiv preprint arXiv:2005.08100}, year={2020} } @inproceedings{gorman2018improving, title={Improving homograph disambiguation with supervised machine learning}, author={Gorman, Kyle and Mazovetskiy, Gleb and Nikolaev, Vitaly}, booktitle={Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year={2018} } @inproceedings{kim2021conditional, title={Conditional variational autoencoder with adversarial learning for end-to-end text-to-speech}, author={Kim, Jaehyeon and Kong, Jungil and Son, Juhee}, booktitle={International Conference on Machine Learning}, pages={5530--5540}, year={2021}, organization={PMLR} }