|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import tempfile |
|
|
|
import pytest |
|
import torch |
|
from omegaconf import OmegaConf |
|
|
|
from nemo.collections.tts.models import FastPitchModel, HifiGanModel, RadTTSModel |
|
from nemo.utils.app_state import AppState |
|
|
|
|
|
@pytest.fixture() |
|
def fastpitch_model(): |
|
model = FastPitchModel.from_pretrained(model_name="tts_en_fastpitch") |
|
model.export_config['enable_volume'] = True |
|
model.export_config['enable_ragged_batches'] = True |
|
return model |
|
|
|
|
|
@pytest.fixture() |
|
def hifigan_model(): |
|
model = HifiGanModel.from_pretrained(model_name="tts_en_hifigan") |
|
return model |
|
|
|
|
|
@pytest.fixture() |
|
def radtts_model(): |
|
this_test_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
cfg = OmegaConf.load(os.path.join(this_test_dir, '../../../examples/tts/conf/rad-tts_feature_pred.yaml')) |
|
cfg.model.init_from_ptl_ckpt = None |
|
cfg.model.train_ds.dataset.manifest_filepath = "dummy.json" |
|
cfg.model.train_ds.dataset.sup_data_path = "dummy.json" |
|
cfg.model.validation_ds.dataset.manifest_filepath = "dummy.json" |
|
cfg.model.validation_ds.dataset.sup_data_path = "dummy.json" |
|
cfg.pitch_mean = 212.35 |
|
cfg.pitch_std = 68.52 |
|
|
|
app_state = AppState() |
|
app_state.is_model_being_restored = True |
|
model = RadTTSModel(cfg=cfg.model) |
|
app_state.is_model_being_restored = False |
|
model.eval() |
|
model.export_config['enable_ragged_batches'] = True |
|
model.export_config['enable_volume'] = True |
|
return model |
|
|
|
|
|
class TestExportable: |
|
@pytest.mark.run_only_on('GPU') |
|
@pytest.mark.unit |
|
def test_FastPitchModel_export_to_onnx(self, fastpitch_model): |
|
model = fastpitch_model.cuda() |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
filename = os.path.join(tmpdir, 'fp.onnx') |
|
model.export(output=filename, verbose=True, onnx_opset_version=14, check_trace=True) |
|
|
|
@pytest.mark.with_downloads() |
|
@pytest.mark.run_only_on('GPU') |
|
@pytest.mark.unit |
|
def test_HifiGanModel_export_to_onnx(self, hifigan_model): |
|
model = hifigan_model.cuda() |
|
assert hifigan_model.generator is not None |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
filename = os.path.join(tmpdir, 'hfg.onnx') |
|
model.export(output=filename, verbose=True, check_trace=True) |
|
|
|
@pytest.mark.pleasefixme |
|
@pytest.mark.run_only_on('GPU') |
|
@pytest.mark.unit |
|
def test_RadTTSModel_export_to_torchscript(self, radtts_model): |
|
model = radtts_model.cuda() |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
filename = os.path.join(tmpdir, 'rad.ts') |
|
with torch.cuda.amp.autocast(enabled=True, cache_enabled=False, dtype=torch.float16): |
|
input_example1 = model.input_module.input_example(max_batch=13, max_dim=777) |
|
input_example2 = model.input_module.input_example(max_batch=19, max_dim=999) |
|
model.export(output=filename, verbose=True, input_example=input_example1, check_trace=[input_example2]) |
|
|
|
@pytest.mark.pleasefixme |
|
@pytest.mark.run_only_on('GPU') |
|
@pytest.mark.unit |
|
def test_RadTTSModel_export_to_onnx(self, radtts_model): |
|
model = radtts_model.cuda() |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
filename = os.path.join(tmpdir, 'rad.onnx') |
|
with torch.cuda.amp.autocast(enabled=True, cache_enabled=False, dtype=torch.float16): |
|
input_example1 = model.input_module.input_example(max_batch=13, max_dim=777) |
|
input_example2 = model.input_module.input_example(max_batch=19, max_dim=999) |
|
model.export( |
|
output=filename, |
|
input_example=input_example1, |
|
verbose=True, |
|
onnx_opset_version=14, |
|
check_trace=[input_example2], |
|
) |
|
|