|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This file implemented unit tests for loading all pretrained WaveGlow NGC checkpoints and converting Mel-spectrograms into |
|
audios. In general, each test for a single model is ~4 seconds on an NVIDIA RTX A6000. |
|
""" |
|
|
|
import pytest |
|
|
|
from nemo.collections.tts.models import WaveGlowModel |
|
|
|
available_models = [model.pretrained_model_name for model in WaveGlowModel.list_available_models()] |
|
|
|
|
|
@pytest.fixture(params=available_models, ids=available_models) |
|
@pytest.mark.run_only_on('GPU') |
|
def pretrained_model(request, get_language_id_from_pretrained_model_name): |
|
model_name = request.param |
|
language_id = get_language_id_from_pretrained_model_name(model_name) |
|
model = WaveGlowModel.from_pretrained(model_name=model_name) |
|
return model, language_id |
|
|
|
|
|
@pytest.mark.nightly |
|
@pytest.mark.run_only_on('GPU') |
|
def test_inference(pretrained_model, mel_spec_example): |
|
model, _ = pretrained_model |
|
_ = model.convert_spectrogram_to_audio(spec=mel_spec_example) |
|
|