|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This file implemented unit tests for loading all pretrained VITS NGC checkpoints and generating Mel-spectrograms. |
|
The test duration breakdowns are shown below. In general, each test for a single model is ~34 seconds on an NVIDIA RTX A6000. |
|
""" |
|
import pytest |
|
|
|
from nemo.collections.tts.models import VitsModel |
|
|
|
available_models = [model.pretrained_model_name for model in VitsModel.list_available_models()] |
|
|
|
|
|
@pytest.fixture(params=available_models, ids=available_models) |
|
@pytest.mark.run_only_on('GPU') |
|
def pretrained_model(request, get_language_id_from_pretrained_model_name): |
|
model_name = request.param |
|
language_id = get_language_id_from_pretrained_model_name(model_name) |
|
model = VitsModel.from_pretrained(model_name=model_name) |
|
return model, language_id |
|
|
|
|
|
@pytest.mark.nightly |
|
@pytest.mark.run_only_on('GPU') |
|
def test_inference(pretrained_model, language_specific_text_example): |
|
model, language_id = pretrained_model |
|
text = language_specific_text_example[language_id] |
|
parsed_text = model.parse(text) |
|
_ = model.convert_text_to_waveform(tokens=parsed_text) |
|
|