|
NeMo TTS Configuration Files |
|
============================ |
|
This section describes the NeMo configuration file setup that is specific to models in the TTS collection. For general information |
|
about how to set up and run experiments that is common to all NeMo models (e.g. Experiment Manager and PyTorch Lightning trainer |
|
parameters), see the :doc:`../core/core` section. |
|
|
|
The model section of the NeMo TTS configuration files generally requires information about the dataset(s) being used, the preprocessor |
|
for audio files, parameters for any augmentation being performed, as well as the model architecture specification. The sections on |
|
this page cover each of these in more detail. |
|
|
|
Example configuration files for all of the NeMo TTS scripts can be found in the |
|
`config directory of the examples <https://github.com/NVIDIA/NeMo/tree/stable/examples/tts/conf>`_. |
|
|
|
Dataset Configuration |
|
--------------------- |
|
|
|
Training, validation, and test parameters are specified using the ``model.train_ds``, ``model.validation_ds``, and ``model.test_ds`` sections in the configuration file, respectively. Depending on the task, there may be arguments specifying the sample rate of the audio files, supplementary data such as speech/text alignment priors and speaker IDs, etc., the threshold to trim leading and trailing silence from an audio signal, pitch normalization parameters, and so on. You may also decide to leave fields such as the ``manifest_filepath`` blank, to be specified via the command-line at runtime. |
|
|
|
Any initialization parameter that is accepted for the class `nemo.collections.tts.data.tts_dataset.TTSDataset |
|
<https://github.com/NVIDIA/NeMo/tree/stable/nemo/collections/tts/data/tts_dataset.py#L80>`_ can be set in the config |
|
file. Refer to the `Dataset Processing Classes <./api.html#Datasets>`__ section of the API for a list of datasets classes and their respective parameters. An example TTS train and validation configuration should look similar to the following: |
|
|
|
.. code-block:: yaml |
|
|
|
model: |
|
train_ds: |
|
dataset: |
|
_target_: nemo.collections.tts.data.tts_dataset.TTSDataset |
|
manifest_filepath: ??? |
|
sample_rate: 44100 |
|
sup_data_path: ??? |
|
sup_data_types: ["align_prior_matrix", "pitch"] |
|
n_fft: 2048 |
|
win_length: 2048 |
|
hop_length: 512 |
|
window: hann |
|
n_mels: 80 |
|
lowfreq: 0 |
|
highfreq: null |
|
max_duration: null |
|
min_duration: 0.1 |
|
ignore_file: null |
|
trim: false |
|
pitch_fmin: 65.40639132514966 |
|
pitch_fmax: 2093.004522404789 |
|
pitch_norm: true |
|
pitch_mean: 212.35873413085938 |
|
pitch_std: 68.52806091308594 |
|
use_beta_binomial_interpolator: true |
|
|
|
dataloader_params: |
|
drop_last: false |
|
shuffle: true |
|
batch_size: 32 |
|
num_workers: 12 |
|
pin_memory: true |
|
|
|
|
|
Audio Preprocessor Configuration |
|
-------------------------------- |
|
|
|
If you are loading audio files for your experiment, you will likely want to use a preprocessor to convert from the raw audio signal to features (e.g. mel-spectrogram or MFCC). The ``preprocessor`` section of the config specifies the audio preprocessor to be used via the ``_target_`` field, as well as any initialization parameters for that preprocessor. An example of specifying a preprocessor is as follows. Refer to the `Audio Preprocessors <../asr/api.html#Audio Preprocessors>`__ API section for the preprocessor options, expected arguments, and defaults. |
|
|
|
.. code-block:: yaml |
|
|
|
model: |
|
preprocessor: |
|
_target_: nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor |
|
features: 80 |
|
lowfreq: 0 |
|
highfreq: null |
|
n_fft: 2048 |
|
n_window_size: 2048 |
|
window_size: false |
|
n_window_stride: 512 |
|
window_stride: false |
|
pad_to: 1 |
|
pad_value: 0 |
|
sample_rate: 44100 |
|
window: hann |
|
normalize: null |
|
preemph: null |
|
dither: 0.0 |
|
frame_splicing: 1 |
|
log: true |
|
log_zero_guard_type: add |
|
log_zero_guard_value: 1e-05 |
|
mag_power: 1.0 |
|
|
|
Text Normalizer Configuration |
|
------------------------------ |
|
Text normalization (TN) converts text from written form into its verbalized form, and it is an essential preprocessing step before text-to-speech Synthesis. TN ensures that TTS can handle all input texts without skipping unknown symbols. For example, "$123" is converted to "one hundred and twenty three dollars". Currently, NeMo supports text normalizers for English, German, Spanish, and Chinese. Refer to the previous Section :doc:`../nlp/text_normalization/intro` for more details. Below shows an example of specifying text normalizer for English. |
|
|
|
.. code-block:: yaml |
|
|
|
model: |
|
text_normalizer: |
|
_target_: nemo_text_processing.text_normalization.normalize.Normalizer |
|
lang: en |
|
input_case: cased |
|
|
|
text_normalizer_call_kwargs: |
|
verbose: false |
|
punct_pre_process: true |
|
punct_post_process: true |
|
|
|
Tokenizer Configuration |
|
------------------------ |
|
Tokenization converts input text string to a list of integer tokens. It may pad leading and/or trailing whitespaces to a string. NeMo tokenizer supports grapheme-only inputs, phoneme-only inputs, or a mixer of grapheme and phoneme inputs to disambiguate pronunciations of heteronyms for English, German, and Spanish. It also utilizes a grapheme-to-phoneme (G2P) tool to transliterate out-of-vocabulary (OOV) words. Please refer to the Section :doc:`../text_processing/g2p/g2p` and `TTS tokenizer collection <https://github.com/NVIDIA/NeMo/tree/stable/nemo/collections/common/tokenizers/text_to_speech/tts_tokenizers.py>`_ for more details. Note that G2P integration to NeMo TTS tokenizers pipeline is upcoming soon. The following example sets up a ``EnglishPhonemesTokenizer`` with a mixer of grapheme and phoneme inputs where each word shown in the heteronym list is transliterated into graphemes or phonemes by a 50% chance. |
|
|
|
.. code-block:: yaml |
|
|
|
model: |
|
text_tokenizer: |
|
_target_: nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers.EnglishPhonemesTokenizer |
|
punct: true |
|
stresses: true |
|
chars: true |
|
apostrophe: true |
|
pad_with_space: true |
|
g2p: |
|
_target_: nemo.collections.tts.g2p.modules.EnglishG2p |
|
phoneme_dict: ${phoneme_dict_path} |
|
heteronyms: ${heteronyms_path} |
|
phoneme_probability: 0.5 |
|
|
|
|
|
Model Architecture Configuration |
|
-------------------------------- |
|
Each configuration file should describe the model architecture being used for the experiment. Models in the NeMo TTS collection need several module sections with the ``_target_`` field specifying which model architecture or component is used. Please refer to `TTS module collection <https://github.com/NVIDIA/NeMo/tree/stable/nemo/collections/tts/modules>`_ for details. Below shows an example of FastPitch model architecture, |
|
|
|
.. code-block:: yaml |
|
|
|
model: |
|
input_fft: #n_embed and padding_idx are added by the model |
|
_target_: nemo.collections.tts.modules.transformer.FFTransformerEncoder |
|
n_layer: 6 |
|
n_head: 1 |
|
d_model: 384 |
|
d_head: 64 |
|
d_inner: 1536 |
|
kernel_size: 3 |
|
dropout: 0.1 |
|
dropatt: 0.1 |
|
dropemb: 0.0 |
|
d_embed: 384 |
|
|
|
output_fft: |
|
_target_: nemo.collections.tts.modules.transformer.FFTransformerDecoder |
|
n_layer: 6 |
|
n_head: 1 |
|
d_model: 384 |
|
d_head: 64 |
|
d_inner: 1536 |
|
kernel_size: 3 |
|
dropout: 0.1 |
|
dropatt: 0.1 |
|
dropemb: 0.0 |
|
|
|
alignment_module: |
|
_target_: nemo.collections.tts.modules.aligner.AlignmentEncoder |
|
n_text_channels: 384 |
|
|
|
duration_predictor: |
|
_target_: nemo.collections.tts.modules.fastpitch.TemporalPredictor |
|
input_size: 384 |
|
kernel_size: 3 |
|
filter_size: 256 |
|
dropout: 0.1 |
|
n_layers: 2 |
|
|
|
pitch_predictor: |
|
_target_: nemo.collections.tts.modules.fastpitch.TemporalPredictor |
|
input_size: 384 |
|
kernel_size: 3 |
|
filter_size: 256 |
|
dropout: 0.1 |
|
n_layers: 2 |
|
|
|
optim: |
|
name: adamw |
|
lr: 1e-3 |
|
betas: [0.9, 0.999] |
|
weight_decay: 1e-6 |
|
|
|
sched: |
|
name: NoamAnnealing |
|
warmup_steps: 1000 |
|
last_epoch: -1 |
|
d_model: 1 # Disable scaling based on model dim |
|
|
|
Finetuning Configuration |
|
-------------------------- |
|
|
|
All TTS scripts support easy finetuning by partially/fully loading the pretrained weights from a checkpoint into the **currently instantiated model**. Note that the currently instantiated model should have parameters that match the pre-trained checkpoint (such that weights may load properly). In order to directly finetune a pre-existing checkpoint, please follow the tutorial of `Finetuning FastPitch for a new speaker. <https://github.com/NVIDIA/NeMo/tree/stable/tutorials/tts/FastPitch_Finetuning.ipynb>`_ |
|
|
|
Pre-trained weights can be provided in multiple ways: |
|
|
|
1) Providing a path to a NeMo model (via ``init_from_nemo_model``) |
|
2) Providing a name of a pretrained NeMo model (which will be downloaded via the cloud) (via ``init_from_pretrained_model``) |
|
3) Providing a path to a Pytorch Lightning checkpoint file (via ``init_from_ptl_ckpt``) |
|
|
|
There are multiple TTS model finetuning scripts in `examples/tts/<model>_finetune.py <https://github.com/NVIDIA/NeMo/tree/stable/examples/tts/>`_. You can finetune any model by substituting the ``<model>`` tag. An example of finetuning a HiFiGAN model is shown below. |
|
|
|
Fine-tuning via a NeMo model |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
|
|
.. code-block:: sh |
|
:emphasize-lines: 13 |
|
|
|
python examples/tts/hifigan_finetune.py \ |
|
--config-path=<path to dir of configs> \ |
|
--config-name=<name of config without .yaml>) \ |
|
model/train_ds=train_ds_finetune \ |
|
model/validation_ds=val_ds_finetune \ |
|
train_dataset="<path to manifest file>" \ |
|
validation_dataset="<path to manifest file>" \ |
|
model.optim.lr=0.00001 \ |
|
~model.optim.sched \ |
|
trainer.devices=-1 \ |
|
trainer.accelerator='gpu' \ |
|
trainer.max_epochs=50 \ |
|
+init_from_nemo_model="<path to .nemo model file>" |
|
|
|
|
|
Fine-tuning via a NeMo pretrained model name |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
|
|
.. code-block:: sh |
|
:emphasize-lines: 13 |
|
|
|
python examples/tts/hifigan_finetune.py \ |
|
--config-path=<path to dir of configs> \ |
|
--config-name=<name of config without .yaml>) \ |
|
model/train_ds=train_ds_finetune \ |
|
model/validation_ds=val_ds_finetune \ |
|
train_dataset="<path to manifest file>" \ |
|
validation_dataset="<path to manifest file>" \ |
|
model.optim.lr=0.00001 \ |
|
~model.optim.sched \ |
|
trainer.devices=-1 \ |
|
trainer.accelerator='gpu' \ |
|
trainer.max_epochs=50 \ |
|
+init_from_pretrained_model="<name of pretrained checkpoint>" |
|
|
|
Fine-tuning via a Pytorch Lightning checkpoint |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
|
|
.. code-block:: sh |
|
:emphasize-lines: 13 |
|
|
|
python examples/tts/hifigan_finetune.py \ |
|
--config-path=<path to dir of configs> \ |
|
--config-name=<name of config without .yaml>) \ |
|
model/train_ds=train_ds_finetune \ |
|
model/validation_ds=val_ds_finetune \ |
|
train_dataset="<path to manifest file>" \ |
|
validation_dataset="<path to manifest file>" \ |
|
model.optim.lr=0.00001 \ |
|
~model.optim.sched \ |
|
trainer.devices=-1 \ |
|
trainer.accelerator='gpu' \ |
|
trainer.max_epochs=50 \ |
|
+init_from_ptl_ckpt="<name of pytorch lightning checkpoint>" |
|
|