NeMo / docs /source /nlp /text_classification.rst
camenduru's picture
thanks to NVIDIA ❤
7934b29
.. _text_classification:
Text Classification model
=========================
Text Classification is a sequence classification model based on BERT-based encoders. It can be used for a
variety of tasks like text classification, sentiment analysis, domain/intent detection for dialogue systems, etc.
The model takes a text input and predicts a label/class for the whole sequence. Megatron-LM and most of the BERT-based encoders
supported by HuggingFace including BERT, RoBERTa, and DistilBERT.
An example script on how to train the model can be found here: `NeMo/examples/nlp/text_classification/text_classification_with_bert.py <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/text_classification/text_classification_with_bert.py>`__.
The default configuration file for the model can be found at: `NeMo/examples/nlp/text_classification/conf/text_classification_config.yaml <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/text_classification/conf/text_classification_config.yaml>`__.
There is also a Jupyter notebook which explains how to work with this model. We recommend you try this model in the Jupyter notebook (can run on `Google's Colab <https://colab.research.google.com/notebooks/intro.ipynb>`_.):
`NeMo/tutorials/nlp/Text_Classification_Sentiment_Analysis.ipynb <https://colab.research.google.com/github/NVIDIA/NeMo/blob/stable/tutorials/nlp/Text_Classification_Sentiment_Analysis.ipynb>`__.
This tutorial shows an example of how run the Text Classification model on a sentiment analysis task. You may connect to an instance with a GPU (**Runtime** -> **Change runtime type** -> select **GPU** for the hardware accelerator) to run the notebook.
Data Format
-----------
The Text Classification model uses a simple text format as the dataset. It requires the data to be stored in TAB separated files
(``.tsv``) with two columns: sentence and label. Each line of the data file contains text sequences, where words are separated with spaces and the label is separated with ``[TAB]``, i.e.:
.. code::
[WORD][SPACE][WORD][SPACE][WORD][TAB][LABEL]
Labels need to be integers starting from ``0``. Some examples taken from the SST2 dataset, which is a two-class dataset for sentiment analysis:
.. code::
saw how bad this movie was 0
lend some dignity to a dumb story 0
the greatest musicians 1
You may need separate files for train, validation, and test with this format.
Dataset Conversion
------------------
If your dataset is stored in another format, you need to convert it to NeMo's format to use this model. There are some conversion
scripts available for the following datasets:
- SST2 :cite:`nlp-textclassify-socher2013`
- IMDB :cite:`nlp-textclassify-maas2011`
- ChemProt :cite:`nlp-textclassify-lim2018chemical`
- THUCnews :cite:`nlp-textclassify-li2007scalable`
You can convert them from their original format to NeMo's format. To convert the original datasets to NeMo's format, use the ``examples/text_classification/data/import_datasets.py`` script:
.. code:: python
python import_datasets.py \
--dataset_name DATASET_NAME \
--target_data_dir TARGET_PATH \
--source_data_dir SOURCE_PATH
It reads the dataset specified by ``DATASET_NAME`` from ``SOURCE_PATH`` and converts it to NeMo's format. It then saves the new
dataset at ``TARGET_PATH``.
Arguments:
- ``dataset_name``: name of the dataset to convert (``sst-2``, ``chemprot``, ``imdb``, and ``thucnews`` are currently supported)
- ``source_data_dir``: directory of your dataset
- ``target_data_dir``: directory to save the converted dataset
After the conversion, the ``TARGET_PATH`` should contain the following files:
.. code::
.
|--TARGET_PATH
|-- train.tsv
|-- dev.tsv
|-- test.tsv
Some datasets do not have the test set or their test set does not have any labels, therefore, the corresponding file may be missing.
Model Training
--------------
You may find an example of a config file to be used for training of the Text Classification model at `NeMo/examples/nlp/text_classification/conf/text_classification_config.yaml <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/text_classification/conf/text_classification_config.yaml>`__.
You can change any of these parameters directly from the config file or update them with the command-line arguments.
The config file of the Text Classification model contains three main sections of ``trainer``, ``exp_manager``, and ``model``. You can
find more details about the ``trainer`` and ``exp_manager`` at :doc:`./nlp_model`. Some sub-sections of the model section including
``tokenizer``, ``language_model``, and ``optim`` are shared among most of the NLP models. The details of these sections can be found
at :doc:`./nlp_model`.
Example of a command for training a Text Classification model on two GPUs for 50 epochs:
.. code::
python examples/nlp/text_classification/text_classification_with_bert.py \
model.training_ds.file_path=<TRAIN_FILE_PATH> \
model.validation_ds.file_path=<VALIDATION_FILE_PATH> \
trainer.max_epochs=50 \
trainer.devices=[0,1] \
trainer.accelerator='gpu' \
optim.name=adam \
optim.lr=0.0001 \
model.nemo_path=<NEMO_FILE_PATH>
At the start of each training experiment, there is a printed log of the experiment specification including any parameters added or
overridden via the command-line. It also shows additional information, such as which GPUs are available, where logs are saved,
and some samples from the datasets with their corresponding inputs to the model. It also provides some stats on the lengths of
sequences in the dataset.
After each epoch, you should see a summary table of metrics on the validation set which include the following metrics:
- :code:`Precision`
- :code:`Recall`
- :code:`F1`
At the end of training, NeMo saves the last checkpoint at the path specified by ``NEMO_FILE_PATH`` in ``.nemo`` format.
Model Arguments
^^^^^^^^^^^^^^^
The following table lists some of the model's parameters you can use in the config files or set them from the command-line when
training a model:
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **Parameter** | **Data Type** | **Default** | **Description** |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **model.class_labels.class_labels_file** | string | ``null`` | Path to an optional file containing the labels; each line is the string label corresponding to a label. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **model.dataset.num_classes** | int | ``Required`` | Number of the categories or classes, ``0`` < ``Label`` < ``num_classes``. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **model.dataset.do_lower_case** | boolean | ``true`` for uncased models, ``false`` for cased | Specifies if inputs should be made lower case, would be set automatically if pre-trained model is used. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **model.dataset.max_seq_length** | int | ``256`` | Maximum length of the input sequences. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **model.dataset.class_balancing** | string | ``null`` | ``null`` or ``weighted_loss``. ``weighted_loss`` enables the weighted class balancing to handle unbalanced classes. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **model.dataset.use_cache** | boolean | ``false`` | Uses a cache to store the processed dataset, you can use it for large datasets for speed up. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **model.classifier_head.num_output_layers** | integer | ``2`` | Number of fully connected layers of the classifier on top of the BERT model. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **model.classifier_head.fc_dropout** | float | ``0.1`` | Dropout ratio of the fully connected layers. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **{training,validation,test}_ds.file_path** | string | ``Required`` | Path of the training ``.tsv`` file. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **{training,validation,test}_ds.batch_size** | integer | ``32`` | Data loader's batch size. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **{training,validation,test}_ds.num_workers** | integer | ``2`` | Number of worker threads for data loader. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **{training,validation,test}_ds.shuffle** | boolean | ``true`` (training), ``false`` (test and validation) | Shuffles data for each epoch. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **{training,validation,test}_ds.drop_last** | boolean | ``false`` | Specifies if last batch of data needs to get dropped if it is smaller than batch size. |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **{training,validation,test}_ds.pin_memory** | boolean | ``false`` | Enables pin_memory of PyTorch's data loader to enhance speed |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
| **{training,validation,test}_ds.num_samples** | integer | ``-1`` | Number of samples to be used from the dataset; -1 means all samples |
+-----------------------------------------------+-----------------+--------------------------------------------------------+-----------------------------------------------------------------------------------------------------------------------+
Model Evaluation and Inference
------------------------------
After saving the model in ``.nemo`` format, you can load the model and perform evaluation or inference on the model. You can find
some examples in the example script: `NeMo/examples/nlp/text_classification/text_classification_with_bert.py <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/text_classification/text_classification_with_bert.py>`__.
References
----------
.. bibliography:: nlp_all.bib
:style: plain
:labelprefix: NLP-TEXTCLASSIFY
:keyprefix: nlp-textclassify-