File size: 22,431 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "f0408502",
   "metadata": {},
   "source": [
    "# Model Evaluation: Mel Cepstral Distortion with Dynamic Time Warping"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8a749b10",
   "metadata": {},
   "source": [
    "In this tutorial, we will learn how to calculate **mel cepstral distortion (MCD)** with **dynamic time warping (DTW)** between a synthesized mel spec and a reference mel spec. MCD DTW can be useful for comparing models trained on the same training data.\n",
    "\n",
    "MCD is an objective measure of speech quality that is calculated between pairs of TTS-generated mel spectrograms and ground truth mel spectrograms. Two mel spectrograms are similar if the MCD value between them is low; as you might expect, the MCD of a mel spec with itself is 0.\n",
    "\n",
    "MCD DTW is a modification of MCD that works with non-aligned mels by using a dynamic time warping cost matrix. (Vanilla MCD can only be measured for two mels that are both the same length, and which are assumed to be aligned.) The scale depends on factors such as the mel extractor and reduction algorithm (mean of DTW cost or min DTW path cost)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8801b8cb",
   "metadata": {},
   "source": [
    "## License\n",
    "\n",
    "> Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.\n",
    ">\n",
    "> Licensed under the Apache License, Version 2.0 (the \"License\");\n",
    "> you may not use this file except in compliance with the License.\n",
    "> You may obtain a copy of the License at\n",
    ">\n",
    ">     http://www.apache.org/licenses/LICENSE-2.0\n",
    ">\n",
    "> Unless required by applicable law or agreed to in writing, software\n",
    "> distributed under the License is distributed on an \"AS IS\" BASIS,\n",
    "> WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
    "> See the License for the specific language governing permissions and\n",
    "> limitations under the License."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "09cff1ab",
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"\n",
    "You can either run this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
    "Instructions for setting up Colab are as follows:\n",
    "1. Open a new Python 3 notebook.\n",
    "2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
    "3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
    "4. Run this cell to set up dependencies.\n",
    "\"\"\"\n",
    "BRANCH = 'r1.17.0'\n",
    "# If you're using Google Colab and not running locally, uncomment and run this cell.\n",
    "# !pip install librosa numpy matplotlib"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8b9b6e1c",
   "metadata": {},
   "outputs": [],
   "source": [
    "## Import libraries\n",
    "import IPython.display as ipd\n",
    "import librosa\n",
    "import numpy as np\n",
    "import math\n",
    "import matplotlib.pyplot as plt\n",
    "import os"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "398b01e0",
   "metadata": {},
   "source": [
    "## Defining Parameters for Spectrogram Generation\n",
    "\n",
    "In this section we define parameters required to generate our mel spectrograms. More information about these parameters can found in the Librosa documentation for [stft](https://librosa.org/doc/main/generated/librosa.stft.html), [mels](https://librosa.org/doc/main/generated/librosa.filters.mel.html) and [mfcc](https://librosa.org/doc/main/generated/librosa.feature.mfcc.html) generation."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "191012de",
   "metadata": {},
   "outputs": [],
   "source": [
    "## Mel spec params\n",
    "n_fft=1024\n",
    "hop_length=256\n",
    "win_length=None\n",
    "window='hann'\n",
    "n_mels = 80\n",
    "sr = 22050\n",
    "\n",
    "## Mfcc params\n",
    "n_mfcc=34"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "54830c8c",
   "metadata": {},
   "source": [
    "A little bit about these parameters:  \n",
    "    - `n_fft`: Number of fft_components or length of windowed signal after padding in STFT.  \n",
    "    - `hop_length`: Number of audio samples between adjacent STFT columns.  \n",
    "    - `window`: Window to use in STFT.  \n",
    "    - `win_length`: Length of the window to be used.  \n",
    "    - `n_mels`: Number of number of mel bands to generate.  \n",
    "    - `sr`: Sample rate of the samples.  \n",
    "    - `n_mfcc`: Number of MFCCs to generate."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4cb9e37c",
   "metadata": {},
   "source": [
    "## Loading and Visualizing Data\n",
    "\n",
    "Lets apply the algorithm on a synthesized mel and ground truth mel pair for understanding.\n",
    "\n",
    "First, we need a function to generate mel spectrograms from audio files. Mel spectrograms are generated using the [librosa mel extractor](https://librosa.org/doc/main/generated/librosa.filters.mel.html)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "042ceb7f",
   "metadata": {},
   "outputs": [],
   "source": [
    "def wav2mel(filename):\n",
    "    \"\"\"\n",
    "    Function to load an audio file and generate/return mel specs:\n",
    "    Args:\n",
    "        filename: Full path of the audio file.\n",
    "    Returns:\n",
    "        mels: Corresponding mel spectrogram.\n",
    "    \"\"\"\n",
    "    wav_, _ = librosa.load(filename, sr=sr)  # load() returns an (audio data, sample rate) tuple\n",
    "    mels = librosa.feature.melspectrogram(\n",
    "        y=wav_,\n",
    "        sr=sr,\n",
    "        n_fft=n_fft,\n",
    "        hop_length=hop_length,\n",
    "        win_length=win_length,\n",
    "        window=window,\n",
    "        n_mels=n_mels\n",
    "    )\n",
    "    mels = librosa.power_to_db(mels, ref=np.max)\n",
    "    return mels"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8546edb5",
   "metadata": {},
   "source": [
    "We also need a function to convert mels to MFCC, we will use Librosa's [mfcc](https://librosa.org/doc/main/generated/librosa.feature.mfcc.html) generation:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c1a0663d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def mel2mfcc(mels):\n",
    "    mfcc = librosa.feature.mfcc(S=mels, n_mfcc=n_mfcc)\n",
    "    return mfcc"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6efac554",
   "metadata": {},
   "source": [
    "For this tutorial, we have already generated mels from trained [FastPitch](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/tts_en_fastpitch) and [RAD-TTS](https://github.com/NVIDIA/radtts) models, and we have the ground truth sample that they correspond to. Let's first download the tarball with the data and expand it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "156290a9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Untar the example files.\n",
    "!wget https://tts-tutorial-data.s3.us-east-2.amazonaws.com/MCD_DTW_examples.tar\n",
    "!tar -xvf MCD_DTW_examples.tar"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7aeabe75",
   "metadata": {},
   "source": [
    "Now we can generate a mel spectrogram for the ground truth audio, load mel specs for generated audio and generate MFCC(Mel frequency cepstral coefficient) for both."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d1a71f88",
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "## Generate spectrograms\n",
    "gt_mels = wav2mel(\"MCD_DTW/gt/sample_0.wav\")\n",
    "synt_mels = np.load(\"MCD_DTW/fastpitch/mels/mels_0.npy\")\n",
    "\n",
    "## Generate MFCCs\n",
    "gt_mfcc = mel2mfcc(gt_mels)\n",
    "synt_mfcc = mel2mfcc(synt_mels)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "faa5df64",
   "metadata": {},
   "source": [
    "### Visualizing the Audio\n",
    "\n",
    "Let's first listen to the ground truth and synthesized audio."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08f08b89",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(\"Ground truth audio:\")\n",
    "audio_gt, sr_gt = librosa.load(\"MCD_DTW/gt/sample_0.wav\")\n",
    "ipd.display(ipd.Audio(audio_gt, rate=sr_gt))\n",
    "\n",
    "print(\"Synthesized audio:\")\n",
    "audio_fp, sr_fp = librosa.load(\"MCD_DTW/fastpitch/audio/sample_0.wav\")\n",
    "ipd.display(ipd.Audio(audio_fp, rate=sr_fp))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "21b5c780",
   "metadata": {},
   "source": [
    "Now, let's take a look at the mel spectrograms."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "550d9b12",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Visualize mel spectrograms\n",
    "fig, ax = plt.subplots(2, 1, figsize=(12,10))\n",
    "\n",
    "_ = ax[0].pcolormesh(gt_mels, cmap='viridis')\n",
    "_ = ax[0].set_title(\"Ground Truth Mel Spectrogram\")\n",
    "\n",
    "_ = ax[1].pcolormesh(synt_mels, cmap='viridis')\n",
    "_ = ax[1].set_title(\"FastPitch Synthesized Mel Spectrogram\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "93c4c301",
   "metadata": {},
   "source": [
    "## Calculating the DTW matrix\n",
    "\n",
    "Dynamic time warping finds the most optimal path to align two sequences of different length, and in doing so measures the similarity between the two time series that are not in sync.\n",
    "\n",
    "DTW uses dynamic programming to **calculate the cost of every alignment path and chooses the path with least accumulated cost**. The value of accumulated cost matrix $D$ at index $(x_a, y_b)$ is the minimum distance between the points, where $x$ and $y$ are two time series. Formally, the cost matrix can be defined as:\n",
    "  \n",
    "$D(a,b) = min(D(a-1, b), D(a, b-1), D(a-1, b-1)) + c(x_{a}, y_{b})$  \n",
    "$D(1, b) = \\sum(c(1, y_{b}))$  \n",
    "$D(a, 1) = \\sum(c(x_{a}, 1))$ \n",
    "  \n",
    "Where ***x*** and ***y*** are the audio signals and ***c*** is the log cost function we have defined.\n",
    "\n",
    "We will use [the DTW function from Librosa](https://librosa.org/doc/main/generated/librosa.sequence.dtw.html) on MFCC. It returns the DTW accumulated cost matrix and DTW optimum path.\n",
    "\n",
    "In the following function, we define the cost function for DTW to pass in."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8a4adae2",
   "metadata": {},
   "outputs": [],
   "source": [
    "## Define the cost function for calculating DTW\n",
    "def log_spec_dB_dist(x, y):\n",
    "    log_spec_dB_const = 10.0 / math.log(10.0) * math.sqrt(2.0)\n",
    "    diff = x - y\n",
    "    return log_spec_dB_const * math.sqrt(np.inner(diff, diff))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ca8c6974",
   "metadata": {},
   "source": [
    "Now we can run Librosa's `dtw()`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0c4c5338",
   "metadata": {},
   "outputs": [],
   "source": [
    "# dtw_cost: Shape (N, M), where N and M are the lengths of gt_mfcc, synt_mfcc respectively. Cost matrix.\n",
    "# dtw_min_path: Shape (N, 2). Pairs of coordinates with of the min-cost path from bottom-right to top-left.\n",
    "dtw_cost, dtw_min_path = librosa.sequence.dtw(gt_mfcc, synt_mfcc, metric=log_spec_dB_dist)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "913b6548",
   "metadata": {},
   "source": [
    "Reduction of the DTW matrix can be done by either taking the mean of the entire cost matrix or averaging the DTW cost for the minimum cost path per frame. We will use the DTW cost along the min cost path."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6c85ab38",
   "metadata": {},
   "outputs": [],
   "source": [
    "# First, sum up the costs over the path\n",
    "path_cost_matrix = dtw_cost[dtw_min_path[:, 0], dtw_min_path[:, 1]]\n",
    "path_cost = np.sum(path_cost_matrix)\n",
    "\n",
    "# Average over path length\n",
    "path_length = dtw_min_path.shape[0]\n",
    "reduced_dtw_cost = path_cost/path_length\n",
    "\n",
    "# Average over number of frames\n",
    "frames = synt_mels.shape[1]\n",
    "mcd = reduced_dtw_cost/frames\n",
    "\n",
    "print(f\"MCD_DTW is: {mcd}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "24801d61",
   "metadata": {},
   "source": [
    "## MCD DTW Usecase\n",
    "\n",
    "MCD is a very useful metric to **compare the convergence of two models**. Therefore in this section, we will calculate the average MCD for audio files generated by two different models: FastPitch and RAD-TTS.\n",
    "\n",
    "But first, let's put the calculations we have just performed in functions for better readability and reusability.\n",
    "\n",
    "Here are the helper functions for getting the average cost of DTW along a path."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e4181d60",
   "metadata": {},
   "outputs": [],
   "source": [
    "def extract_path_cost(D, wp):\n",
    "    \"\"\"\n",
    "    Get the path cost from D(cost matrix), wp (warped path)\n",
    "    Returns the sum of the path cost \n",
    "    \"\"\"\n",
    "    path_cost = D[wp[:, 0], wp[:, 1]]\n",
    "    return np.sum(path_cost)\n",
    "\n",
    "def extract_frame_avg_path_cost(D, wp):\n",
    "    \"\"\"\n",
    "    Get the average path cost over the length of the given path\n",
    "    \"\"\"\n",
    "    path_cost = extract_path_cost(D, wp)\n",
    "    path_length = wp.shape[0]\n",
    "    frame_avg_path_cost = path_cost / float(path_length)\n",
    "    return frame_avg_path_cost"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08ca0f47",
   "metadata": {},
   "source": [
    "And a function for calculating MCD for a synthetic mel spectrogram:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "99800a97",
   "metadata": {},
   "outputs": [],
   "source": [
    "def cal_mcd(gt_mfcc, synt_mfcc, cost_function, dtw_type='path_cost'):\n",
    "    \"\"\"\n",
    "    Calculates MCD between a ground truth and synthetic mel.\n",
    "    \"\"\"\n",
    "    frames = synt_mfcc.shape[1]\n",
    "    path_cost = 0\n",
    "    \n",
    "    # dynamic time warping for MCD\n",
    "    dtw_cost, dtw_min_path = librosa.sequence.dtw(gt_mfcc, synt_mfcc, metric=cost_function)\n",
    "    if dtw_type == 'mean':\n",
    "        path_cost = np.mean(dtw_cost)\n",
    "    else:\n",
    "        path_cost = extract_frame_avg_path_cost(dtw_cost, dtw_min_path)\n",
    "    \n",
    "    mcd = path_cost / frames\n",
    "    \n",
    "    return mcd, frames"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f1489ecf",
   "metadata": {},
   "source": [
    "This last function will calculate the MCDs for all the synthetic mels in a directory.\n",
    "\n",
    "We'll get a better comparison if we compute the MCDs of (much) more than one synthesized spectrogram per model! This function streamlines the process by letting us pass in (1) a directory with all the synthesized mel spectrograms from a TTS model, and (2) a directory with all the ground-truth audio.\n",
    "\n",
    "The function assumes that, after sorting the contents of each directory, wav *#i* in the ground truth directory will correspond to mel *#i* in the synthesized mel directory. In our case, the directories for ground truth and synthesized FastPitch mels look like this:\n",
    "\n",
    "```bash\n",
    "% ls gt/\n",
    "sample_0.wav  sample_1.wav  sample_2.wav  sample_3.wav  sample_4.wav\n",
    "% ls fastpitch/mels/\n",
    "mels_0.npy  mels_1.npy  mels_2.npy  mels_3.npy  mels_4.npy\n",
    "```\n",
    "\n",
    "We only have ten files each to compare as a toy example, for a full evaluation you will likely want more!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "07bb51df",
   "metadata": {},
   "outputs": [],
   "source": [
    "def cal_mcd_dir(synt_dir, gt_dir):\n",
    "    \"\"\"\n",
    "    Calculate MCDs for pairs of synthetic and ground truth audio files.\n",
    "    \n",
    "    Args:\n",
    "        synt_dir: Path to the directory that contains all the synthetic mels.\n",
    "        gt_dir: Path to the directory that contains all the ground truth wavs.\n",
    "            These should correspond 1:1 with the mels in synt_dir.\n",
    "            \n",
    "    Returns:\n",
    "        List of MCDs (where length is the number of files in each directory)\n",
    "    \"\"\"\n",
    "    mcds = []\n",
    "    \n",
    "    synt_filenames = os.listdir(synt_dir)\n",
    "    synt_filepaths = [os.path.join(synt_dir, filename) for filename in synt_filenames]\n",
    "    synt_filepaths.sort()\n",
    "    gt_filenames = os.listdir(gt_dir)\n",
    "    gt_filepaths = [os.path.join(gt_dir, filename) for filename in gt_filenames]\n",
    "    gt_filepaths.sort()\n",
    "\n",
    "    for synt_melname, gt_audio in zip(synt_filepaths, gt_filepaths):\n",
    "        synt_mels = np.load(synt_melname)\n",
    "        synt_mfcc = mel2mfcc(synt_mels)\n",
    "        \n",
    "        gt_mels = wav2mel(gt_audio)\n",
    "        gt_mfcc = mel2mfcc(gt_mels)\n",
    "        \n",
    "        mcd, _ = cal_mcd(gt_mfcc, synt_mfcc, log_spec_dB_dist)\n",
    "        mcds.append(mcd)\n",
    "    return mcds"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fc295283",
   "metadata": {
    "scrolled": true
   },
   "source": [
    "### Calculate MCD DTW on Synthesized Files from Each Model\n",
    "\n",
    "We can now calculate the MCD DTW for the synthesized FastPitch mels (compared to the ground truth) as well as for the synthesized RAD-TTS mels (ditto), then compare them. This will take a few seconds."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2bc8da46",
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "%%capture --no-display\n",
    "mels_dir_m1 = \"MCD_DTW/fastpitch/mels/\"\n",
    "mels_dir_m2 = \"MCD_DTW/radtts/mels/\"\n",
    "mels_dir_gt = \"MCD_DTW/gt/\"\n",
    "\n",
    "mcds_m1 = cal_mcd_dir(mels_dir_m1, mels_dir_gt)  # FastPitch\n",
    "mcds_m2 = cal_mcd_dir(mels_dir_m2, mels_dir_gt)  # RAD-TTS"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6bd1ef33",
   "metadata": {},
   "outputs": [],
   "source": [
    "print(f\"Average MCD for Model 1 (FastPitch) is: {sum(mcds_m1)/len(mcds_m1):.2f}\")\n",
    "print(f\"Average MCD for Model 2 (RAD-TTS) is:   {sum(mcds_m2)/len(mcds_m2):.2f}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f9ef5363",
   "metadata": {},
   "source": [
    "We're measuring divergence from the ground truth for each of these, so **lower is better**!"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71e998a9",
   "metadata": {},
   "source": [
    "### Plotting MCD"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7f81c5b5",
   "metadata": {},
   "source": [
    "We can also plot the MCD DTW values for both models, with the model with a lower MCD DTW value being closer to ground truth."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3f8d71bf",
   "metadata": {},
   "outputs": [],
   "source": [
    "x_axis = np.linspace(1, len(mcds_m1), len(mcds_m1)) ## Define an x axis for for plotting in matplotlib\n",
    "plt.plot(x_axis, mcds_m1, label=\"FastPitch\")\n",
    "plt.plot(x_axis, mcds_m2, label=\"RAD-TTS\")\n",
    "\n",
    "plt.title(\"MCD DTW value for each file\")\n",
    "plt.ylabel(\"MCD_DTW value\")\n",
    "\n",
    "plt.grid()\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fd4eb0a6",
   "metadata": {},
   "source": [
    "From the graph above, we can see that in general the value of MCD is greater for RAD-TTS mel spectrograms than for the FastPitch ones. This is also reflected in the average MCD value for both models that we computed before.\n",
    "\n",
    "Therefore, we can conclude that FastPitch has better convergence than RAD-TTS. However, we cannot evaluate the quality of audio generated by these models using MCD alone! **MCD is a great tool for testing model convergence, but generated audio may have pronunciation and quality artifacts.** Therefore MCD evaluation should be followed by a MOS (Mean Opinion Score) and CMOS (Comparative Mean Opinion Score) evaluation."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d66a52d5",
   "metadata": {},
   "source": [
    "## Additional NeMo Resources\n",
    "\n",
    "If you are unsure where to begin for training a TTS model, you may want to start with the [FastPitch and Mixer-TTS Training notebook](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/FastPitch_MixerTTS_Training.ipynb) or the [NeMo TTS Primer notebook](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/NeMo_TTS_Primer.ipynb). For fine-tuning, there is also the [FastPitch Fine-Tuning notebook](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/FastPitch_Finetuning.ipynb).\n",
    "\n",
    "For some guidance on how to load a trained model and perform inference to generate mels or waveforms, check out how it's done in the [Inference notebook](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tts/Inference_ModelSelect.ipynb). Important functions to know are include `from_pretrained()` (if loading from an NGC model) and `restore_from()` (if loading a `.nemo` file). See the [NeMo Primer notebook](https://github.com/NVIDIA/NeMo/blob/stable/tutorials/00_NeMo_Primer.ipynb) for more general information about model training, saving, and loading."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.15"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}