File size: 12,683 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
name: megatron_gpt
restore_from_path: null # used when starting from a .nemo file

trainer:
  devices: 1
  num_nodes: 1
  accelerator: gpu
  precision: 16
  logger: False # logger provided by exp_manager
  enable_checkpointing: False
  replace_sampler_ddp: False
  max_epochs: -1 # PTL default. In practice, max_steps will be reached first. 
  max_steps: 100000 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches
  log_every_n_steps: 10
  val_check_interval: 100
  limit_val_batches: 50
  limit_test_batches: 500
  accumulate_grad_batches: 1 # do not modify, grad acc is automatic for training megatron models
  gradient_clip_val: 1.0
  benchmark: False
  enable_model_summary: False # default PTL callback for this does not support model parallelism, instead we log manually

exp_manager:
  explicit_log_dir: null
  exp_dir: null
  name: megatron_gpt
  create_wandb_logger: False
  wandb_logger_kwargs:
    project: null
    name: null
  resume_if_exists: True
  resume_ignore_no_checkpoint: True
  create_checkpoint_callback: True
  checkpoint_callback_params:
    monitor: val_loss
    save_top_k: 10
    mode: min
    always_save_nemo: False # saves nemo file during validation, not implemented for model parallel
    save_nemo_on_train_end: False # not recommended when training large models on clusters with short time limits
    filename: 'megatron_gpt--{val_loss:.2f}-{step}-{consumed_samples}'
    model_parallel_size: ${multiply:${model.tensor_model_parallel_size}, ${model.pipeline_model_parallel_size}}

model:
  # specify micro_batch_size, global_batch_size, and model parallelism
  # gradient accumulation will be done automatically based on data_parallel_size
  micro_batch_size: 4 # limited by GPU memory
  global_batch_size: 8 # will use more micro batches to reach global batch size
  tensor_model_parallel_size: 1 # intra-layer model parallelism
  pipeline_model_parallel_size: 1 # inter-layer model parallelism
  virtual_pipeline_model_parallel_size: null # interleaved pipeline

  # model architecture
  encoder_seq_length: 512
  max_position_embeddings: ${.encoder_seq_length}
  num_layers: 12
  hidden_size: 768
  ffn_hidden_size: 3072 # Transformer FFN hidden size. Usually 4 * hidden_size.
  num_attention_heads: 12
  init_method_std: 0.02 # Standard deviation of the zero mean normal distribution used for weight initialization.')
  use_scaled_init_method: True # use scaled residuals initialization
  hidden_dropout: 0.1 # Dropout probability for hidden state transformer.
  attention_dropout: 0.1 # Dropout probability for attention
  ffn_dropout: 0.0 # Dropout probability in the feed-forward layer.
  kv_channels: null # Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if null
  apply_query_key_layer_scaling: True # scale Q * K^T by 1 / layer-number.
  normalization: 'layernorm' # Normalization layer to use. Options are 'layernorm', 'rmsnorm'
  layernorm_epsilon: 1e-5
  do_layer_norm_weight_decay: False # True means weight decay on all params
  make_vocab_size_divisible_by: 128 # Pad the vocab size to be divisible by this value for computation efficiency.
  pre_process: True # add embedding
  post_process: True # add pooler
  persist_layer_norm: True # Use of persistent fused layer norm kernel.
  bias: True # Whether to use bias terms in all weight matrices.
  activation: 'gelu' # Options ['gelu', 'geglu', 'swiglu', 'reglu', 'squared-relu', 'fast-geglu', 'fast-swiglu', 'fast-reglu']
  headscale: False # Whether to learn extra parameters that scale the output of the each self-attention head.
  transformer_block_type: 'pre_ln' # Options ['pre_ln', 'post_ln', 'normformer']
  openai_gelu: False # Use OpenAI's GELU instead of the default GeLU
  normalize_attention_scores: True # Whether to scale the output Q * K^T by 1 / sqrt(hidden_size_per_head). This arg is provided as a configuration option mostly for compatibility with models that have been weight-converted from HF. You almost always want to se this to True.
  position_embedding_type: 'learned_absolute' # Position embedding type. Options ['learned_absolute', 'rope']
  rotary_percentage: 1.0 # If using position_embedding_type=rope, then the per head dim is multiplied by this.
  attention_type: 'multihead' # Attention type. Options ['multihead']
  share_embeddings_and_output_weights: True # Share embedding and output layer weights.

  tokenizer:
    library: 'megatron'
    type: 'GPT2BPETokenizer'
    model: null
    vocab_file: null
    merge_file: null 
    delimiter: null # only used for tabular tokenizer
    sentencepiece_legacy: False # Legacy=True allows you to add special tokens to sentencepiece tokenizers.

  # Mixed precision
  native_amp_init_scale: 4294967296 # 2 ** 32
  native_amp_growth_interval: 1000
  hysteresis: 2 # Gradient scale hysteresis
  fp32_residual_connection: False # Move residual connections to fp32
  fp16_lm_cross_entropy: False # Move the cross entropy unreduced loss calculation for lm head to fp16

  # Megatron O2-style half-precision
  megatron_amp_O2: False # Enable O2-level automatic mixed precision using main parameters
  grad_allreduce_chunk_size_mb: 125

  # Fusion
  grad_div_ar_fusion: True # Fuse grad division into torch.distributed.all_reduce. Only used with O2 and no pipeline parallelism..
  gradient_accumulation_fusion: False # Fuse weight gradient accumulation to GEMMs. Only used with pipeline parallelism and O2.
  bias_activation_fusion: True # Use a kernel that fuses the bias addition from weight matrices with the subsequent activation function.
  bias_dropout_add_fusion: True # Use a kernel that fuses the bias addition, dropout and residual connection addition.
  masked_softmax_fusion: True # Use a kernel that fuses the attention softmax with it's mask.
  get_attention_mask_from_fusion: True # When using fused softmax it will create the attention mask so we won't copy it to the pipeline stages.


  # Miscellaneous
  seed: 1234
  resume_from_checkpoint: null # manually set the checkpoint file to load from
  use_cpu_initialization: False # Init weights on the CPU (slow for large models)
  onnx_safe: False # Use work-arounds for known problems with Torch ONNX exporter.
  apex_transformer_log_level: 30 # Python logging level displays logs with severity greater than or equal to this
  gradient_as_bucket_view: True # PyTorch DDP argument. Allocate gradients in a contiguous bucket to save memory (less fragmentation and buffer memory)
  sync_batch_comm: False # Enable stream synchronization after each p2p communication between pipeline stages

  ## Activation Checkpointing
  # NeMo Megatron supports 'selective' activation checkpointing where only the memory intensive part of attention is checkpointed.
  # These memory intensive activations are also less compute intensive which makes activation checkpointing more efficient for LLMs (20B+).
  # See Reducing Activation Recomputation in Large Transformer Models: https://arxiv.org/abs/2205.05198 for more details.
  # 'full' will checkpoint the entire transformer layer.
  activations_checkpoint_granularity: null # 'selective' or 'full' 
  activations_checkpoint_method: null # 'uniform', 'block'
  # 'uniform' divides the total number of transformer layers and checkpoints the input activation
  # of each chunk at the specified granularity. When used with 'selective', 'uniform' checkpoints all attention blocks in the model.
  # 'block' checkpoints the specified number of layers per pipeline stage at the specified granularity
  activations_checkpoint_num_layers: null
  # when using 'uniform' this creates groups of transformer layers to checkpoint. Usually set to 1. Increase to save more memory.
  # when using 'block' this this will checkpoint the first activations_checkpoint_num_layers per pipeline stage.
  num_micro_batches_with_partial_activation_checkpoints: null
  # This feature is valid only when used with pipeline-model-parallelism.
  # When an integer value is provided, it sets the number of micro-batches where only a partial number of Transformer layers get checkpointed
  # and recomputed within a window of micro-batches. The rest of micro-batches in the window checkpoint all Transformer layers. The size of window is
  # set by the maximum outstanding micro-batch backpropagations, which varies at different pipeline stages. The number of partial layers to checkpoint
  # per micro-batch is set by 'activations_checkpoint_num_layers' with 'activations_checkpoint_method' of 'block'.
  # This feature enables using activation checkpoint at a fraction of micro-batches up to the point of full GPU memory usage.
  activations_checkpoint_layers_per_pipeline: null
  # This feature is valid only when used with pipeline-model-parallelism.
  # When an integer value (rounded down when float is given) is provided, it sets the number of Transformer layers to skip checkpointing at later
  # pipeline stages. For example, 'activations_checkpoint_layers_per_pipeline' of 3 makes pipeline stage 1 to checkpoint 3 layers less than
  # stage 0 and stage 2 to checkpoint 6 layers less stage 0, and so on. This is possible because later pipeline stage
  # uses less GPU memory with fewer outstanding micro-batch backpropagations. Used with 'num_micro_batches_with_partial_activation_checkpoints',
  # this feature removes most of activation checkpoints at the last pipeline stage, which is the critical execution path.

  ## Sequence Parallelism
  # Makes tensor parallelism more memory efficient for LLMs (20B+) by parallelizing layer norms and dropout sequentially
  # See Reducing Activation Recomputation in Large Transformer Models: https://arxiv.org/abs/2205.05198 for more details.
  sequence_parallel: False

  ## Transformer Engine
  transformer_engine: False
  fp8: False # enables fp8 in TransformerLayer forward
  fp8_e4m3: False # sets fp8_format = recipe.Format.E4M3 
  fp8_hybrid: False # sets fp8_format = recipe.Format.HYBRID
  fp8_margin: 0 # scaling margin 
  fp8_interval: 1 # scaling update interval
  fp8_amax_history_len: 1 # Number of steps for which amax history is recorded per tensor
  fp8_amax_compute_algo: most_recent # 'most_recent' or 'max'. Algorithm for computing amax from history
  reduce_amax: True # Perform reduction to sync amax tensors across GPUs after every iteration
  use_emha: False # Use fused multi-head attention for large sequence-length. Note this is not yet supported. Please set to False.

  data:
   # Path to data must be specified by the user.
    # Supports List, String and Dictionary
    # List : can override from the CLI: "model.data.data_prefix=[.5,/raid/data/pile/my-gpt3_00_text_document,.5,/raid/data/pile/my-gpt3_01_text_document]",
    # Or see example below: 
    # data_prefix: 
    #   - .5
    #   - /raid/data/pile/my-gpt3_00_text_document
    #   - .5
    #   - /raid/data/pile/my-gpt3_01_text_document
    # Dictionary: can override from CLI "model.data.data_prefix"={"train":[1.0, /path/to/data], "validation":/path/to/data, "test":/path/to/test}
    # Or see example below:
    # "model.data.data_prefix: {train:[1.0,/path/to/data], validation:[/path/to/data], test:[/path/to/test]}"
    data_prefix: ???
    index_mapping_dir: null # path to save index mapping .npy files, by default will save in the same location as data_prefix
    data_impl: mmap
    splits_string: 900,50,50
    seq_length: ${model.encoder_seq_length}
    skip_warmup: True
    num_workers: 2
    dataloader_type: single # cyclic
    reset_position_ids: False # Reset position ids after end-of-document token
    reset_attention_mask: False # Reset attention mask after end-of-document token
    eod_mask_loss: False # Mask loss for the end of document tokens
    validation_drop_last: True # Set to false if the last partial validation samples is to be consumed
    no_seqlen_plus_one_input_tokens: False # Set to True to disable fetching (sequence length + 1) input tokens, instead get (sequence length) input tokens and mask the last token
    pad_samples_to_global_batch_size: False # Set to True if you want to pad the last partial batch with -1's to equal global batch size

  # Nsys profiling options
  nsys_profile:
    enabled: False
    start_step: 10  # Global batch to start profiling
    end_step: 10 # Global batch to end profiling
    ranks: [0] # Global rank IDs to profile
    gen_shape: False # Generate model and kernel details including input shapes
  
  optim:
    name: fused_adam
    lr: 2e-4
    weight_decay: 0.01 
    betas: 
    - 0.9
    - 0.98
    sched:
      name: CosineAnnealing
      warmup_steps: 500
      constant_steps: 50000
      min_lr: 2e-5