File size: 41,581 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
.. _punctuation_and_capitalization:

Punctuation and Capitalization Model
====================================

Quick Start Guide
-----------------

.. code-block:: python

    from nemo.collections.nlp.models import PunctuationCapitalizationModel

    # to get the list of pre-trained models
    PunctuationCapitalizationModel.list_available_models()

    # Download and load the pre-trained BERT-based model
    model = PunctuationCapitalizationModel.from_pretrained("punctuation_en_bert")

    # try the model on a few examples
    model.add_punctuation_capitalization(['how are you', 'great how about you'])

Model Description
-----------------

For each word in the input text, the Punctuation and Capitalization model:

- predicts a punctuation mark that should follow the word (if any). By default, the model supports commas, periods, and question marks.
- predicts if the word should be capitalized or not

In the Punctuation and Capitalization model, we are jointly training two token-level classifiers on top of a pre-trained
language model, such as `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`__ :cite:`nlp-punct-devlin2018bert`.

.. note::

    We recommend you try this model in a Jupyter notebook (run on `Google's Colab <https://colab.research.google.com/notebooks/intro.ipynb>`_.): `NeMo/tutorials/nlp/Punctuation_and_Capitalization.ipynb <https://github.com/NVIDIA/NeMo/blob/stable/tutorials/nlp/Punctuation_and_Capitalization.ipynb>`__.

    Connect to an instance with a GPU (**Runtime** -> **Change runtime type** -> select **GPU** for the hardware accelerator).

    An example script on how to train and evaluate the model can be found at: `NeMo/examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py>`__.

    The default configuration file for the model can be found at: `NeMo/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml>`__.

    The script for inference can be found at: `NeMo/examples/nlp/token_classification/punctuate_capitalize_infer.py <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/punctuate_capitalize_infer.py>`__.

.. _raw_data_format_punct:

Raw Data Format
---------------

The Punctuation and Capitalization model can work with any text dataset, although it is recommended to balance the
data, especially for the punctuation task. Before pre-processing the data to the format expected by the model, the
data should be split into ``train.txt`` and ``dev.txt`` (and optionally ``test.txt``). Each line in the
``train.txt/dev.txt/test.txt`` should represent one or more full and/or truncated sentences.

Example of the ``train.txt``/``dev.txt`` file:

.. code::

    When is the next flight to New York?
    The next flight is ...
    ....


The ``source_data_dir`` structure should look similar to the following:

.. code::

   .
   |--sourced_data_dir
     |-- dev.txt
     |-- train.txt

.. _nemo-data-format-label:

NeMo Data Format
----------------

The Punctuation and Capitalization model expects the data in the following format:

The training and evaluation data is divided into 2 files:
- ``text.txt``
- ``labels.txt``

Each line of the ``text.txt`` file contains text sequences, where words are separated with spaces.

[WORD] [SPACE] [WORD] [SPACE] [WORD], for example:

    ::

        when is the next flight to new york
        the next flight is ...
        ...

The ``labels.txt`` file contains corresponding labels for each word in ``text.txt``, the labels are separated with
spaces. Each label in ``labels.txt`` file consists of 2 symbols:

- the first symbol of the label indicates what punctuation mark should follow the word (where ``O`` means no
  punctuation needed)

- the second symbol determines if a word needs to be capitalized or not (where ``U`` indicates that the word should be
  upper cased, and ``O`` - no capitalization needed)

By default, the following punctuation marks are considered: commas, periods, and question marks; the remaining punctuation marks were
removed from the data. This can be changed by introducing new labels in the ``labels.txt`` files.

Each line of the ``labels.txt`` should follow the format: ``[LABEL] [SPACE] [LABEL] [SPACE] [LABEL]`` (for ``labels.txt``). For example,
labels for the above ``text.txt`` file should be:

    ::

        OU OO OO OO OO OO OU ?U
        OU OO OO OO ...
        ...

The complete list of all possible labels used in this tutorial are:

- ``OO``
- ``.O``
- ``?O``
- ``OU``
- <blank space>
- ``.U``
- ``?U``

Converting Raw Data to NeMo Format
----------------------------------

To pre-process the raw text data, stored under :code:`sourced_data_dir` (see the :ref:`raw_data_format_punct`
section), run the following command:

.. code::

    python examples/nlp/token_classification/data/prepare_data_for_punctuation_capitalization.py \
           -s <PATH/TO/THE/SOURCE/FILE> \
           -o <PATH/TO/THE/OUTPUT/DIRECTORY>


Required Argument for Dataset Conversion
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- :code:`-s` or :code:`--source_file`: path to the raw file
- :code:`-o` or :code:`--output_dir` - path to the directory to store the converted files

After the conversion, the :code:`output_dir` should contain :code:`labels_*.txt` and :code:`text_*.txt` files. The
default names for the training and evaluation in the :code:`conf/punctuation_capitalization_config.yaml` are the
following:

.. code::

   .
   |--output_dir
     |-- labels_dev.txt
     |-- labels_train.txt
     |-- text_dev.txt
     |-- text_train.txt

Tarred dataset
--------------

Tokenization and encoding of data is quite costly for punctuation and capitalization task. If your dataset contains a
lot of samples (~4M) you may use tarred dataset. A tarred dataset is a collection of `.tar` files which
contain batches ready for passing into a model. Tarred dataset is not loaded into memory entirely, but in small pieces,
which do not overflow memory. Tarred dataset relies on `webdataset <https://github.com/webdataset/webdataset>`_.

For creating of tarred dataset you will need data in NeMo format:

.. code::

    python examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py \
        --text <PATH/TO/LOWERCASED/TEXT/WITHOUT/PUNCTUATION> \
        --labels <PATH/TO/LABELS/IN/NEMO/FORMAT> \
        --output_dir <PATH/TO/DIRECTORY/WITH/OUTPUT/TARRED/DATASET> \
        --num_batches_per_tarfile 100

All tar files contain similar amount of batches, so up to :code:`--num_batches_per_tarfile - 1` batches will be
discarded during tarred dataset creation.

Beside `.tar` files with batches, the
`examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py
<https://github.com/NVIDIA/NeMo/tree/stable/examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py>`_
script will create metadata JSON file, and 2 `.csv` files with punctuation and
capitalization label vocabularies. To use tarred dataset you will need to pass path to a metadata file of your dataset
in a config parameter :code:`model.train_ds.tar_metadata_file` and set a config parameter
:code:`model.train_ds.use_tarred_dataset=true`.

Training Punctuation and Capitalization Model
---------------------------------------------

The language model is initialized with the a pre-trained model from
`HuggingFace Transformers <https://github.com/huggingface/transformers>`__, unless the user provides a pre-trained
checkpoint for the language model. To train model from scratch, you will need to provide HuggingFace configuration in
one of parameters ``model.language_model.config_file``, ``model.language_model.config``. An example of a model
configuration file for training the model can be found at:
`NeMo/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml>`__.

A configuration file is a `.yaml` file which contains all parameters for model creation, training, testing, validation.
A structure of the configuration file for training and testing is described in the :ref:`Run config<run-config-label>`
section. Some of parameters are required in a punctuation-and-capitalization `.yaml` config. Default values of
required parameters are ``???``. If you omit any of other parameters, they will be initialized according to default
values from following tables.

.. _run-config-label:

Run config
^^^^^^^^^^

An example of a config file is
`here <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/conf/punctuation_capitalization_config.yaml>`_.

.. list-table:: Run config. The main config passed to a script `punctuation_capitalization_train_evaluate.py <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py>`_
   :widths: 5 5 10 25
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **pretrained_model**
     - string
     - ``null``
     - Can be an NVIDIA's NGC cloud model or a path to a ``.nemo`` checkpoint. You can get list of possible cloud options
       by calling a method :py:meth:`~nemo.collections.nlp.models.PunctuationCapitalizationModel.list_available_models`.
   * - **name**
     - string
     - ``'Punctuation_and_Capitalization'``
     - A name of the model. Used for naming output directories and ``.nemo`` checkpoints.
   * - **do_training**
     - bool
     - ``true``
     - Whether to perform training of the model.
   * - **do_testing**
     - bool
     - ``false``
     - Whether ot perform testing of the model after training.
   * - **model**
     - :ref:`model config<model-config-label>`
     - :ref:`model config<model-config-label>`
     - A configuration for the :class:`~nemo.collections.nlp.models.PunctuationCapitalizationModel`.
   * - **trainer**
     - trainer config
     -
     - Parameters of
       `pytorch_lightning.Trainer <https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html#trainer-class-api>`_.
   * - **exp_manager**
     - exp manager config
     -
     - A configuration with various NeMo training options such as output directories, resuming from checkpoint,
       tensorboard and W&B logging, and so on. For possible options see :ref:`exp-manager-label` description and class
       :class:`~nemo.utils.exp_manager.exp_manager`.

.. _model-config-label:

Model config
^^^^^^^^^^^^

.. list-table:: Location of model config in parent config
   :widths: 5 5
   :header-rows: 1

   * - **Parent config**
     - **Key in parent config**
   * - :ref:`Run config<run-config-label>`
     - ``model``

A configuration of
:class:`~nemo.collections.nlp.models.token_classification.punctuation_capitalization_model.PunctuationCapitalizationModel`
model.

.. list-table:: Model config
   :widths: 5 5 10 25
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **class_labels**
     - :ref:`class labels config<class-labels-config-label>`
     - :ref:`class labels config<class-labels-config-label>`
     - Cannot be omitted in `.yaml` config. The ``class_labels`` parameter containing a dictionary with names of label
       id files used in ``.nemo`` checkpoints. These file names can also be used for passing label vocabularies to the
       model. If you wish to use ``class_labels`` for passing vocabularies, please provide path to vocabulary files in
       ``model.common_dataset_parameters.label_vocab_dir`` parameter.
   * - **common_dataset_parameters**
     - :ref:`common dataset parameters config<common-dataset-parameters-config-label>`
     - :ref:`common dataset parameters config<common-dataset-parameters-config-label>`
     - Label ids and loss mask information.
   * - **train_ds**
     - :ref:`data config<data-config-label>` with string in  ``ds_item``
     - ``null``
     - A configuration for creating training dataset and data loader. Cannot be omitted in `.yaml` config if training
       is performed.
   * - **validation_ds**
     - :ref:`data config<data-config-label>` with string OR list of strings in ``ds_item``
     - ``null``
     - A configuration for creating validation datasets and data loaders.
   * - **test_ds**
     - :ref:`data config<data-config-label>` with string OR list of strings in ``ds_item``
     - ``null``
     - A configuration for creating test datasets and data loaders. Cannot be omitted in `.yaml` config if testing is
       performed.
   * - **punct_head**
     - :ref:`head config<head-config-label>`
     - :ref:`head config<head-config-label>`
     - A configuration for creating punctuation MLP head that is applied to a language model outputs.
   * - **capit_head**
     - :ref:`head config<head-config-label>`
     - :ref:`head config<head-config-label>`
     - A configuration for creating capitalization MLP head that is applied to a language model outputs.
   * - **tokenizer**
     - :ref:`tokenizer config<tokenizer-config-label>`
     - :ref:`tokenizer config<tokenizer-config-label>`
     - A configuration for creating source text tokenizer.
   * - **language_model**
     - :ref:`language model config<language-model-config-label>`
     - :ref:`language model config<language-model-config-label>`
     - A configuration of a BERT-like language model which serves as a model body.
   * - **optim**
     - optimization config
     - ``null``
     - A configuration of optimizer, learning rate scheduler, and L2 regularization. Cannot be omitted in `.yaml`
       config if training is performed. For more information see :ref:`Optimization <optimization-label>` and
       `primer <https://github.com/NVIDIA/NeMo/tree/stable/tutorials/00_NeMo_Primer.ipynb>`_ tutorial.

.. _class-labels-config-label:

Class labels config
^^^^^^^^^^^^^^^^^^^

.. list-table:: Location of class labels config in parent configs
   :widths: 5 5
   :header-rows: 1

   * - **Parent config**
     - **Key in parent config**
   * - :ref:`Run config<run-config-label>`
     - ``model.class_labels``
   * - :ref:`Model config<model-config-label>`
     - ``class_labels``

.. list-table:: Class labels config
   :widths: 5 5 5 35
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **punct_labels_file**
     - string
     - ???
     - A name of a punctuation labels file. This parameter cannot be omitted in `.yaml` config. This name
       is used as a name of label ids file in ``.nemo`` checkpoint. It also can be used for passing label vocabulary to
       the model. If ``punct_labels_file`` is used as a vocabulary file, then you should provide parameter
       ``label_vocab_dir`` in :ref:`common dataset parameters<common-dataset-parameters-config-label>`
       (``model.common_dataset_parameters.label_vocab_dir`` in :ref:`run config<run-config-label>`). Each line of
       ``punct_labels_file`` file contains 1 label. The values are sorted, ``<line number>==<label id>``, starting
       from 0. A label with ``0`` id must contain neutral label which has to be
       equal to a ``pad_label`` parameter in :ref:`common dataset parameters<common-dataset-parameters-config-label>`.

   * - **capit_labels_file**
     - string
     - ???
     - Same as ``punct_labels_file`` for capitalization labels.

.. _common-dataset-parameters-config-label:

Common dataset parameters config
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. list-table:: Location of common dataset parameters config in parent config
   :widths: 5 5
   :header-rows: 1

   * - **Parent config**
     - **Key in parent config**
   * - :ref:`Run config<run-config-label>`
     - ``model.common_dataset_config``
   * - :ref:`Model config<model-config-label>`
     - ``common_dataset_config``

A common dataset parameters config which includes label and loss mask information.
If you omit parameters ``punct_label_ids``, ``capit_label_ids``, ``label_vocab_dir``, then labels will be inferred
from a training dataset or loaded from a checkpoint.

Parameters ``ignore_extra_tokens`` and ``ignore_start_end`` are responsible for forming loss mask. A loss mask
defines on which tokens loss is computed.

.. list-table:: Common dataset parameters config
   :widths: 5 5 5 35
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **pad_label**
     - string
     - ???
     - This parameter cannot be omitted in `.yaml` config. The ``pad_label`` parameter contains label used for
       punctuation and capitalization label padding. It also serves as a neutral label for both punctuation and
       capitalization. If any of ``punct_label_ids``, ``capit_label_ids`` parameters is provided, then ``pad_label``
       must have ``0`` id in them. In addition, if ``label_vocab_dir`` is provided, then ``pad_label`` must be on the
       first lines in files ``class_labels.punct_labels_file`` and ``class_labels.capit_labels_file``.
   * - **ignore_extra_tokens**
     - bool
     - ``false``
     - Whether to compute loss on not first tokens in words. If this parameter is ``true``, then loss mask is ``false``
       for all tokens in a word except the first.
   * - **ignore_start_end**
     - bool
     - ``true``
     - If ``false``, then loss is computed on [CLS] and [SEP] tokens.
   * - **punct_label_ids**
     - ``Dict[str, int]``
     - ``null``
     - A dictionary with punctuation label ids. ``pad_label`` must have ``0`` id in this dictionary. You can omit this
       parameter and pass label ids through ``class_labels.punct_labels_file`` or let the model to infer label ids from
       dataset or load them from checkpoint.
   * - **capit_label_ids**
     - ``Dict[str, int]``
     - ``null``
     - Same as ``punct_label_ids`` for capitalization labels.
   * - **label_vocab_dir**
     - string
     - ``null``
     - A path to directory which contains class labels files. See :class:`ClassLabelsConfig`. If this parameter is
       provided, then labels will be loaded from files which are located in ``label_vocab_dir`` and have names
       specified in ``model.class_labels`` configuration section. A label specified in ``pad_label`` has to be on the
       first lines of ``model.class_labels`` files.

.. _data-config-label:

Data config
^^^^^^^^^^^

.. list-table:: Location of data configs in parent configs
   :widths: 5 5
   :header-rows: 1

   * - **Parent config**
     - **Keys in parent config**
   * - :ref:`Run config<run-config-label>`
     - ``model.train_ds``, ``model.validation_ds``, ``model.test_ds``
   * - :ref:`Model config<model-config-label>`
     - ``train_ds``, ``validation_ds``, ``test_ds``

For convenience, items of data config are described in 4 tables:
:ref:`common parameters for both regular and tarred datasets<common-data-parameters-label>`,
:ref:`parameters which are applicable only to regular dataset<regular-dataset-parameters-label>`,
:ref:`parameters which are applicable only to tarred dataset<tarred-dataset-parameters-label>`,
:ref:`parameters for PyTorch data loader<pytorch-dataloader-parameters-label>`.

.. _common-data-parameters-label:

.. list-table:: Parameters for both regular (:class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset.BertPunctuationCapitalizationDataset`) and tarred (:class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset.BertPunctuationCapitalizationTarredDataset`) datasets
   :widths: 5 5 5 35
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **use_tarred_dataset**
     - bool
     - ???
     - This parameter cannot be omitted in `.yaml` config. The ``use_tarred_dataset`` parameter specifies whether to
       use tarred dataset or regular dataset. If ``true``, then you should provide ``ds_item``, ``tar_metadata_file``
       parameters. Otherwise, you should provide parameters ``ds_item``, ``text_file``, ``labels_file``,
       ``tokens_in_batch`` parameters.
   * - **ds_item**
     - **string** OR **list of strings** (only if used in ``model.validation_ds`` or ``model.test_ds``)
     - ???
     - This parameter cannot be omitted in `.yaml` config. The ``ds_item`` parameter contains a path to a directory
       with ``tar_metadata_file`` file (if ``use_tarred_dataset=true``) or ``text_file`` and ``labels_file``
       (if ``use_tarred_dataset=false``). For ``validation_ds`` or ``test_ds`` you may specify a list of paths in
       ``ds_item``. If ``ds_item`` is a list, then evaluation will be performed on several datasets. To override
       ``ds_item`` config parameter with a list use following syntax:
       ``python punctuation_capitalization_train_evaluate.py model.validation_ds.ds_item=[path1,path2]`` (no spaces after ``=``
       sign).
   * - **label_info_save_dir**
     - string
     - ``null``
     - A path to a directory where files created during dataset processing are stored. These files include label id
       files and label stats files. By default, it is a directory containing ``text_file`` or ``tar_metadata_file``.
       You may need this parameter if dataset directory is read-only and thus does not allow saving anything near
       dataset files.

.. _regular-dataset-parameters-label:

.. list-table:: Parameters for regular (:class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_dataset.BertPunctuationCapitalizationDataset`) dataset
   :widths: 5 5 5 30
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **text_file**
     - string
     - ``null``
     - This parameter cannot be omitted in `.yaml` config if ``use_tarred_dataset=false``. The ``text_file``
       parameter is a name of a source text file which is located in ``ds_item`` directory.
   * - **labels_file**
     - string
     - ``null``
     - This parameter cannot be omitted in `.yaml` config if ``use_tarred_dataset=false``. The ``labels_file``
       parameter is a name of a file with punctuation and capitalization labels in
       :ref:`NeMo format <nemo-data-format-label>`. It has is located in ``ds_item`` directory.
   * - **tokens_in_batch**
     - int
     - ``null``
     - This parameter cannot be omitted in `.yaml` config if ``use_tarred_dataset=false``. The ``tokens_in_batch``
       parameter contains a number of tokens in a batch including paddings and special tokens ([CLS], [SEP], [UNK]).
       This config does not have ``batch_size`` parameter.
   * - **max_seq_length**
     - int
     - ``512``
     - Max number of tokens in a source sequence. ``max_seq_length`` includes [CLS] and [SEP] tokens. Sequences
       which are too long will be clipped by removal of tokens from the end of a sequence.
   * - **num_samples**
     - int
     - ``-1``
     - A number of samples loaded from ``text_file`` and ``labels_file`` which are used in the dataset. If this
       parameter equals ``-1``, then all samples are used.
   * - **use_cache**
     - bool
     - ``true``
     - Whether to use pickled features which are already present in ``cache_dir``.
       For large not tarred datasets, pickled features may considerably reduce time required for training to start.
       Tokenization of source sequences is not fast because sequences are split into words before tokenization.
       For even larger datasets (~4M), tarred datasets are recommended. If pickled features are missing, then
       new pickled features file will be created regardless of the value of ``use_cache`` parameter because
       pickled features are required for distributed training.
   * - **cache_dir**
     - string
     - ``null``
     - A path to a directory containing cache or directory where newly created cache is saved. By default, it is
       a directory containing ``text_file``. You may need this parameter if cache for a dataset is going to be created
       and the dataset directory is read-only. ``cache_dir`` and ``label_info_save_dir`` are separate parameters for
       the case when a cache is ready and this cache is stored in a read-only directory. In such a case you will
       separate ``label_info_save_dir``.
   * - **get_label_frequences**
     - bool
     - ``false``
     - Whether to show and save label frequencies. Frequencies are showed if ``verbose`` parameter is ``true``. If
       ``get_label_frequencies=true``, then frequencies are saved into ``label_info_save_dir``.
   * - **verbose**
     - bool
     - ``true``
     - If ``true``, then progress messages and examples of acquired features are printed.
   * - **n_jobs**
     - int
     - ``0``
     - Number of workers used for features creation (tokenization, label encoding, and clipping). If ``0``, then
       multiprocessing is not used; if ``null``, then ``n_jobs`` will be equal to the number of CPU cores. WARNING:
       there can be weird deadlocking errors with some tokenizers (e.g. SentencePiece) if ``n_jobs`` is greater than
       zero.

.. _tarred-dataset-parameters-label:

.. list-table:: Parameters for tarred (:class:`~nemo.collections.nlp.data.token_classification.punctuation_capitalization_tarred_dataset.BertPunctuationCapitalizationTarredDataset`) dataset
   :widths: 5 5 5 30
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **tar_metadata_file**
     - string
     - ``null``
     - This parameter cannot be omitted in `.yaml` config if ``use_tarred_dataset=true``. The ``tar_metadata_file``
       is a path to metadata file of tarred dataset. A tarred metadata file and
       other parts of tarred dataset are usually created by the script
       `examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py
       <https://github.com/NVIDIA/NeMo/tree/stable/examples/nlp/token_classification/data/create_punctuation_capitalization_tarred_dataset.py>`_
   * - **tar_shuffle_n**
     - int
     - ``1``
     - The size of shuffle buffer of `webdataset <https://github.com/webdataset/webdataset>`_. The number of batches
       which are permuted.
   * - **shard_strategy**
     - string
     - ``scatter``
     - Tarred dataset shard distribution strategy chosen as a str value during ddp. Accepted values are ``scatter`` and ``replicate``.
       ``scatter``: Each node gets a unique set of shards, which are permanently pre-allocated and never changed at runtime, when the total
       number of shards is not divisible with ``world_size``, some shards (at max ``world_size-1``) will not be used.
       ``replicate``: Each node gets the entire set of shards available in the tarred dataset, which are permanently pre-allocated and never
       changed at runtime. The benefit of replication is that it allows each node to sample data points from the entire dataset independently
       of other nodes, and reduces dependence on value of ``tar_shuffle_n``.

       .. warning::
           Replicated strategy allows every node to sample the entire set of available tarfiles, and therefore more than one node may sample
           the same tarfile, and even sample the same data points! As such, there is no assured guarantee that all samples in the dataset will be
           sampled at least once during 1 epoch. Scattered strategy, on the other hand, on specific occasions (when the number of shards is not
           divisible with ``world_size``), will not sample the entire dataset. For these reasons it is not advisable to use tarred datasets as
           validation or test datasets.

.. _pytorch-dataloader-parameters-label:

.. list-table:: Parameters for PyTorch `torch.utils.data.DataLoader <https://pytorch.org/docs/stable/data.html?highlight=distributedsampler#torch.utils.data.DataLoader>`_
   :widths: 5 5 5 30
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **shuffle**
     - bool
     - ``true``
     - Shuffle batches every epoch. For usual training datasets, the parameter activates batch repacking every
       epoch. For tarred dataset it would be only batches permutation.
   * - **drop_last**
     - bool
     - ``false``
     - In cases when data parallelism is used, ``drop_last`` defines the way data pipeline behaves when some replicas
       are out of data and some are not. If ``drop_last`` is ``True``, then epoch ends in the moment when any replica
       runs out of data. If ``drop_last`` is ``False``, then the replica will replace missing batch with a batch from a
       pool of batches that the replica has already processed. If data parallelism is not used, then parameter
       ``drop_last`` does not do anything. For more information see
       `torch.utils.data.distributed.DistributedSampler
       <https://pytorch.org/docs/stable/data.html?highlight=distributedsampler#torch.utils.data.distributed.DistributedSampler>`_
   * - **pin_memory**
     - bool
     - ``true``
     - See this parameter documentation in
       `torch.utils.data.DataLoader <https://pytorch.org/docs/stable/data.html?highlight=distributedsampler#torch.utils.data.DataLoader>`_
   * - **num_workers**
     - int
     - ``8``
     - See this parameter documentation in
       `torch.utils.data.DataLoader <https://pytorch.org/docs/stable/data.html?highlight=distributedsampler#torch.utils.data.DataLoader>`_
   * - **persistent_memory**
     - bool
     - ``true``
     - See this parameter documentation in
       `torch.utils.data.DataLoader <https://pytorch.org/docs/stable/data.html?highlight=distributedsampler#torch.utils.data.DataLoader>`_

.. _head-config-label:

Head config
^^^^^^^^^^^

.. list-table:: Location of head configs in parent configs
   :widths: 5 5
   :header-rows: 1

   * - **Parent config**
     - **Keys in parent config**
   * - :ref:`Run config<run-config-label>`
     - ``model.punct_head``, ``model.capit_head``
   * - :ref:`Model config<model-config-label>`
     - ``punct_head``, ``capit_head``

This config defines a multilayer perceptron which is applied to
outputs of a language model. Number of units in the hidden layer is equal to the dimension of the language model.

.. list-table:: Head config
   :widths: 5 5 10 25
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **num_fc_layers**
     - int
     - ``1``
     - A number of hidden layers in the multilayer perceptron.
   * - **fc_dropout**
     - float
     - ``0.1``
     - A dropout used in the MLP.
   * - **activation**
     - string
     - ``'relu'``
     - An activation used in hidden layers.
   * - **use_transformer_init**
     - bool
     - ``true``
     - Whether to initialize the weights of the classifier head with the approach that was used for language model
       initialization.

.. _language-model-config-label:

Language model config
^^^^^^^^^^^^^^^^^^^^^

.. list-table:: Location of language model config in parent configs
   :widths: 5 5
   :header-rows: 1

   * - **Parent config**
     - **Key in parent config**
   * - :ref:`Run config<run-config-label>`
     - ``model.language_model``
   * - :ref:`Model config<model-config-label>`
     - ``language_model``

A configuration of a language model which serves as a model body. BERT-like HuggingFace models are supported. Provide a
valid ``pretrained_model_name`` and, optionally, you may reinitialize model via ``config_file`` or ``config``.

Alternatively you can initialize the language model using ``lm_checkpoint``.

.. list-table:: Language model config
   :widths: 5 5 10 25
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **pretrained_model_name**
     - string
     - ???
     - This parameter cannot be omitted in `.yaml` config. The ``pretrained_model_name`` parameter contains a name of
       HuggingFace pretrained model. For example, ``'bert-base-uncased'``.
   * - **config_file**
     - string
     - ``null``
     - A path to a file with HuggingFace model config which is used to reinitialize the language model.
   * - **config**
     - dict
     - ``null``
     - A HuggingFace config which is used to reinitialize the language model.
   * - **lm_checkpoint**
     - string
     - ``null``
     - A path to a ``torch`` checkpoint of the language model.

.. _tokenizer-config-label:

Tokenizer config
^^^^^^^^^^^^^^^^

.. list-table:: Location of tokenizer config in parent configs
   :widths: 5 5
   :header-rows: 1

   * - **Parent config**
     - **Key in parent config**
   * - :ref:`Run config<run-config-label>`
     - ``model.tokenizer``
   * - :ref:`Model config<model-config-label>`
     - ``tokenizer``

A configuration of a source text tokenizer.

.. list-table:: Language model config
   :widths: 5 5 10 25
   :header-rows: 1

   * - **Parameter**
     - **Data type**
     - **Default value**
     - **Description**
   * - **tokenizer_name**
     - string
     - ???
     - This parameter cannot be omitted in `.yaml` config. The ``tokenizer_name`` parameter containing a name of the
       tokenizer used for tokenization of source sequences. Possible
       options are ``'sentencepiece'``, ``'word'``, ``'char'``, HuggingFace tokenizers (e.g. ``'bert-base-uncased'``).
       For more options see function ``nemo.collections.nlp.modules.common.get_tokenizer``. The tokenizer must have
       properties ``cls_id``, ``pad_id``, ``sep_id``, ``unk_id``.
   * - **vocab_file**
     - string
     - ``null``
     - A path to vocabulary file which is used in ``'word'``, ``'char'``, and HuggingFace tokenizers.
   * - **special_tokens**
     - ``Dict[str, str]``
     - ``null``
     - A dictionary with special tokens passed to constructors of ``'char'``, ``'word'``, ``'sentencepiece'``, and
       various HuggingFace tokenizers.
   * - **tokenizer_model**
     - string
     - ``null``
     - A path to a tokenizer model required for ``'sentencepiece'`` tokenizer.


Model training
^^^^^^^^^^^^^^

For more information, refer to the :ref:`nlp_model` section.

To train the model from scratch, run:

.. code::

      python examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py \
             model.train_ds.ds_item=<PATH/TO/TRAIN/DATA_DIR> \
             model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \
             model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \
             model.validation_ds.ds_item=<PATH/TO/DEV/DATA_DIR> \
             model.validation_ds.text_file=<NAME_OF_DEV_TEXT_FILE> \
             model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \
             trainer.devices=[0,1] \
             trainer.accelerator='gpu' \
             optim.name=adam \
             optim.lr=0.0001

The above command will start model training on GPUs 0 and 1 with Adam optimizer and learning rate of 0.0001; and the
trained model is stored in the ``nemo_experiments/Punctuation_and_Capitalization`` folder.

To train from the pre-trained model, run:

.. code::

      python examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py \
             model.train_ds.ds_item=<PATH/TO/TRAIN/DATA_DIR> \
             model.train_ds.text_file=<NAME_OF_TRAIN_INPUT_TEXT_FILE> \
             model.train_ds.labels_file=<NAME_OF_TRAIN_LABELS_FILE> \
             model.validation_ds.ds_item=<PATH/TO/DEV/DATA/DIR> \
             model.validation_ds.text_file=<NAME_OF_DEV_TEXT_FILE> \
             model.validation_ds.labels_file=<NAME_OF_DEV_LABELS_FILE> \
             pretrained_model=<PATH/TO/SAVE/.nemo>


.. note::

    All parameters defined in the configuration file can be changed with command arguments. For example, the sample
    config file mentioned above has :code:`validation_ds.tokens_in_batch` set to ``15000``. However, if you see that
    the GPU utilization can be optimized further by using a larger batch size, you may override to the desired value
    by adding the field :code:`validation_ds.tokens_in_batch=30000` over the command-line. You can repeat this with
    any of the parameters defined in the sample configuration file.

Inference
---------

Inference is performed by a script `examples/nlp/token_classification/punctuate_capitalize_infer.py <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/punctuate_capitalize_infer.py>`_

.. code::

    python punctuate_capitalize_infer.py \
        --input_manifest <PATH/TO/INPUT/MANIFEST> \
        --output_manifest <PATH/TO/OUTPUT/MANIFEST> \
        --pretrained_name punctuation_en_bert \
        --max_seq_length 64 \
        --margin 16 \
        --step 8

:code:`<PATH/TO/INPUT/MANIFEST>` is a path to NeMo :ref:`ASR manifest<LibriSpeech_dataset>` with text in which you need to
restore punctuation and capitalization. If manifest contains :code:`'pred_text'` key, then :code:`'pred_text'` elements
will be processed. Otherwise, punctuation and capitalization will be restored in :code:`'text'` elements.

:code:`<PATH/TO/OUTPUT/MANIFEST>` is a path to NeMo ASR manifest into which result will be saved. The text with restored
punctuation and capitalization is saved into :code:`'pred_text'` elements if :code:`'pred_text'` key is present in the
input manifest. Otherwise result will be saved into :code:`'text'` elements.

Alternatively you can pass data for restoring punctuation and capitalization as plain text. See help for parameters :code:`--input_text`
and :code:`--output_text` of the script
`punctuate_capitalize_infer.py <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/punctuate_capitalize_infer.py>`_.

The script `punctuate_capitalize_infer.py <https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/punctuate_capitalize_infer.py>`_
can restore punctuation and capitalization in a text of arbitrary length. Long sequences are split into segments
:code:`--max_seq_length - 2` tokens each (this number does not include :code:`[CLS]` and :code:`[SEP]` tokens). Each
segment starts and ends with :code:`[CLS]` and :code:`[SEP]` tokens correspondingly. Every segment is offset to the
previous one by :code:`--step` tokens. For example, if every character is a token, :code:`--max_seq_length=5`,
:code:`--step=2`, then text :code:`"hello"` will be split into segments
:code:`[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]`.

If segments overlap, then predicted probabilities for a token present in several segments are multiplied before
before selecting the best candidate.

Splitting leads to pour performance of a model near edges of segments. Use parameter :code:`--margin` to discard :code:`--margin`
probabilities predicted for :code:`--margin` tokens near segment edges. For example, if
every character is a token, :code:`--max_seq_length=5`, :code:`--step=1`, :code:`--margin=1`, then text :code:`"hello"` will be split into
segments :code:`[['[CLS]', 'h', 'e', 'l', '[SEP]'], ['[CLS]', 'e', 'l', 'l', '[SEP]'], ['[CLS]', 'l', 'l', 'o', '[SEP]']]`.
Before calculating final predictions, probabilities for tokens marked by asterisk are removed: :code:`[['[CLS]', 'h', 'e', 'l'*, '[SEP]'*], ['[CLS]'*, 'e'*, 'l', 'l'*, '[SEP]'*], ['[CLS]'*, 'l'*, 'l', 'o', '[SEP]']]`


Model Evaluation
----------------

Model evaluation is performed by the same script
`examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py
<https://github.com/NVIDIA/NeMo/blob/stable/examples/nlp/token_classification/punctuation_capitalization_train_evaluate.py>`_
as training.

Use :ref`config<run-config-lab>` parameter ``do_training=false`` to disable training and parameter ``do_testing=true``
to enable testing. If both parameters ``do_training`` and ``do_testing`` are ``true``, then model is trained and then
tested.

To start evaluation of the pre-trained model, run:

.. code::

    python punctuation_capitalization_train_evaluate.py \
           +model.do_training=false \
           +model.to_testing=true \
           model.test_ds.ds_item=<PATH/TO/TEST/DATA/DIR>  \
           pretrained_model=punctuation_en_bert \
           model.test_ds.text_file=<NAME_OF_TEST_INPUT_TEXT_FILE> \
           model.test_ds.labels_file=<NAME_OF_TEST_LABELS_FILE>


Required Arguments
^^^^^^^^^^^^^^^^^^

- :code:`pretrained_model`: pretrained Punctuation and Capitalization model from ``list_available_models()`` or path to a ``.nemo``
  file. For example: ``punctuation_en_bert`` or ``your_model.nemo``.
- :code:`model.test_ds.ds_item`: path to the directory that containes :code:`model.test_ds.text_file` and :code:`model.test_ds.labels_file`

During evaluation of the :code:`test_ds`, the script generates two classification reports: one for capitalization task and another
one for punctuation task. This classification reports include the following metrics:

- :code:`Precision`
- :code:`Recall`
- :code:`F1`

More details about these metrics can be found `here <https://en.wikipedia.org/wiki/Precision_and_recall>`__.

References
----------

.. bibliography:: nlp_all.bib
    :style: plain
    :labelprefix: NLP-PUNCT
    :keyprefix: nlp-punct-