File size: 12,778 Bytes
c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 74ab58e f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 74ab58e f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 74ab58e f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 78fb48b f748564 939ee59 f748564 c092dc8 f748564 939ee59 f748564 c092dc8 f748564 c092dc8 f748564 c092dc8 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 c7a1f78 f748564 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
---
base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
base_model_relation: finetune
library_name: peft
language:
- en
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
license: gpl-3.0
datasets:
- nvidia/OpenCodeReasoning
pipeline_tag: text-generation
license_link: https://huggingface.co/bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning/blob/main/LICENSE
---
# Qwen2.5-Coder-1.5B-Instruct-Reasoning
The `Qwen2.5-Coder-1.5B-Instruct-Reasoning` model has been supervised fine-tuned (SFT) on the `nvidia/OpenCodeReasoning`
dataset to enhance its reasoning capabilities.
---
### TableofContents
- [Usage](#usage)
- [Comparison](#comparison)
- [Dataset](#dataset)
- [Training](#training)
- [License](#licence)
- [Links](#links)
- [Team](#team)
- [Contact](#contact)
- [Reference](#reference)
- [Citation](#citation)
---
### Usage
#### Hugging Face
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model_name = "Qwen/Qwen2.5-Coder-1.5B-Instruct"
adapter_repo = "bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning"
tokenizer = AutoTokenizer.from_pretrained(adapter_repo, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
torch_dtype="auto",
)
model.resize_token_embeddings(len(tokenizer))
model = PeftModel.from_pretrained(model, adapter_repo)
model.eval()
messages = [
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": "Please provide a Python script that checks whether a number is prime."}
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=2048
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
### Comparison
- Please pay attention to the `<think> </think>` special tokens in the [Reasoning Model](#reasoning-model). As you can
see, the `Reasoning Model` can now _“think”_.
#### Base Model
`System:` You are a helpful coding assistant.
`User:` Please provide a Python script that checks whether a number is prime.
`Assistant:`
```python
def check_prime(num):
# Check if the number is less than 2
if num < 2:
return False
# Check for factors from 2 to the square root of the number
for i in range(2, int(num**0.5) + 1):
if num % i == 0:
return False
# If no factors were found, the number is prime
return True
# Example usage
number = 7
if check_prime(number):
print(f"{number} is a prime number.")
else:
print(f"{number} is not a prime number.")
```
In this Python script, the function `check_prime` takes an integer as input and returns `True` if the number is prime,
otherwise it returns `False`. The function first checks if the number is less than 2, which means it cannot be prime.
Then, it iterates from 2 up to the square root of the number (inclusive). If any factor of the number is found within
this range, the function immediately returns `False`, indicating that the number is not prime. If no factors are found
after checking all possible divisors, the function concludes that the number is prime and returns `True`.
The example usage demonstrates how to call the `check_prime` function with the number 7. The output will indicate
whether 7 is a prime number or not.
#### Reasoning Model
`System:` You are a helpful coding assistant.
`User:` Please provide a Python script that checks whether a number is prime.
`Assistant:`
`<think>`
Okay, I need to write a Python program that checks if a given number is prime. Hmm, what's a prime number? Oh right, a
prime number has exactly two distinct positive divisors: 1 and itself. So for a number to be prime, it must not have any
divisors other than those two.
First, let's think about the steps involved. The first thing is to determine if there are any divisors other than 1 and
the number itself. How do I check that?
Well, for a number n, starting from 2 up to sqrt(n), check if any of them divide n. If any do, then it's not prime. But
wait, maybe even before checking up to the square root, some numbers might have factors beyond that. For example, take
9. The square root is 3. So checking 2,3,4 would catch 9's factors. Wait, but 3 divides 9, so the loop from 2 to sqrt(
n) (which is 3 in this case) will check 2 and 3. So yes, checking up to the square root is sufficient because any
composite number has at least one factor less than or equal to its square root.
So the plan is:
1. Read an integer from input.
2. Check if the number is less than 2. If so, it's not prime.
3. Otherwise, check from 2 up to the square root of the number. For each i, if the number mod i is zero, return False.
4. If none of the numbers in this range divide the number, return True.
Wait, but what about 0 and 1? Well, according to the problem statement, the input could be 0 or 1, which are not primes.
So we should handle those cases separately.
Let me outline the code structure.
Read the input number as an integer. Let's call it num.
Handle edge cases first:
- If num < 2: print "No" (since primes are >=2)
Else:
Compute sqrt_num = int(math.sqrt(num))
Then loop from 2 to sqrt_num inclusive. For each i, check if num % i ==0. If any such i exists, return False. Else,
after checking all, return True.
But how to compute the square root accurately in Python? Using math.isqrt for integers, which returns the floor of the
square root. That's better than using ** operator since it avoids floating point inaccuracies.
Wait, but what if the number is a perfect square? Like 9. Then math.isqrt(9) is 3. So in that case, the loop would check
up to 3. But when i reaches 3, 9%3 is 0, so it would return False, which is correct.
So the code would look something like this:
import math
n = int(input())
if n < 2:
print("No")
else:
sqrt_n = math.isqrt(n)
is_prime = True
for i in range(2, sqrt_n +1):
if n % i == 0:
is_prime = False
break
print("Yes" if is_prime else "No")
Wait, but wait, what about numbers like 25. The square root is 5. So the loop runs from 2 to 5. When i=5, 25%5 is 0, so
returns false. Correct.
This logic seems solid. Let me test some examples.
Test case 1: input 7. The loop runs up to 2. 2 to 2. Check 2. 7%2 is 1, so returns true. Output Yes.
Test case 2: input 6. sqrt(6) is ~2.449. So sqrt_n is 2. Loop from 2 to 2. Check 2. 6%2 is 0. So returns false. Output
No.
Another test case: 8. sqrt(8) is ~2.828. So sqrt_n is 2. Check 2. 8%2 is 0. So output No.
What about a prime number like 13. sqrt(13) is ~3.605. So loop up to 3. Check 2 and 3. 13%2 is 1, 13%3 is 1. So returns
true. Correct.
Edge case: 1. Output No.
Another edge case: 2. Output Yes.
What about a very large number, say 999983 (a prime). The code should check up to sqrt(999983) which is around 999.9. So
the loop runs 2 to 999. It will check all possible factors. Since it's a prime, none will divide it. So returns Yes.
So the code seems to handle all cases correctly.
I think that's the solution. Now, writing the code accordingly.
`</think>`
```python
import math
n = int(input())
if n < 2:
print("No")
else:
sqrt_n = math.isqrt(n)
is_prime = True
for i in range(2, sqrt_n + 1):
if n % i == 0:
is_prime = False
break
print("Yes" if is_prime else "No")
```
---
### Dataset
- [nvidia/OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning)
---
### Training
#### Base
| Parameter | Value |
|-----------------------------|------------------------------------|
| Base Model | `Qwen/Qwen2.5-Coder-1.5B-Instruct` |
| Fine-tuning Method | QLoRA |
| Task Type | `CAUSAL_LM` |
| Number of Epochs | `3` |
| Batch Size | `1` |
| Gradient Accumulation Steps | `1` |
| Effective Batch Size | `1` |
| Learning Rate | `2e-4` |
| LR Scheduler Type | `cosine` |
| Warmup Ratio | `0.05` |
| Precision | `FP16 Mixed Precision` |
| Gradient Checkpointing | `True` |
| Completion-Only Loss | `True` |
| Packing | `False` |
| Max Sequence Length | `8192 tokens` |
| Logging Steps | every `10000` steps |
| Save Checkpoint Steps | every `10000` steps |
| Output Directory | `.model` |
#### PEFT/LoRA
| Parameter | Value |
|-----------------|-----------------------------------------------------------------------------|
| LoRA Rank (`r`) | `16` |
| LoRA Alpha | `32` |
| LoRA Dropout | `0.05` |
| LoRA Bias | `none` |
| Task Type | `CAUSAL_LM` |
| Target Modules | `q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj` |
| Modules to Save | `embed_tokens`, `lm_head` |
#### Model
| Parameter | Value |
|---------------------------|------------------------------------|
| Name | `Qwen/Qwen2.5-Coder-1.5B-Instruct` |
| Attention Implementation | `flash_attention_2` |
| load_in_4bit | `true` |
| bnb_4bit_quant_type | `nf4` |
| bnb_4bit_use_double_quant | `true` |
#### Dataset
| Parameter | Value |
|---------------------|----------------------------|
| Dataset Name | `nvidia/OpenCodeReasoning` |
| Split | `split_0` |
| Number of Rows | `8000` |
| Max Token Length | `8192` |
| Shuffle | `True` |
| Number of Processes | `4` |
#### Tokenizer
| Parameter | Value |
|--------------------------------|-----------------------------|
| Truncation | Enabled (`max_length=8192`) |
| Masked Language Modeling (MLM) | `False` |
#### Speeds, Sizes, Times
| Parameter | Value |
|----------------------|------------------------------------------------------------|
| Total Training Time | ~3.5 hours |
| Checkpoint Frequency | every `10000` steps |
| Checkpoint Steps | `checkpoint-10000`, `checkpoint-20000`, `checkpoint-24000` |
#### Compute Infrastructure
| Parameter | Value |
|--------------|----------------------------------|
| GPU | 1 × NVIDIA H100 SXM (80 GB VRAM) |
| RAM | 125 GB |
| CPU | 16 vCPU |
| OS | Ubuntu 22.04 |
| Frameworks | PyTorch 2.4.0 |
| CUDA Version | 12.4.1 |
---
### Licence
- [LICENSE](LICENSE)
---
### Links
- [Github](https://github.com/bunyaminergen/)
- [Website](https://bunyaminergen.com)
- [Linkedin](https://www.linkedin.com/in/bunyaminergen)
---
### Team
- [Bunyamin Ergen](https://www.linkedin.com/in/bunyaminergen)
---
### Contact
- [Mail](mailto:info@bunyaminergen.com)
---
### Reference
- This model has been fine-tuned using Supervised Fine Tuning (SFT) method from the original
model [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct).
---
### Citation
```bibtex
@software{ Qwen2.5-Coder-1.5B-Instruct-Reasoning,
author = {Bunyamin Ergen},
title = {{Qwen2.5-Coder-1.5B-Instruct-Reasoning}},
year = {2025},
month = {04},
}
```
--- |