File size: 7,291 Bytes
c7a1f78
 
f748564
c7a1f78
f748564
 
 
 
 
 
 
 
 
 
 
 
 
c7a1f78
 
f748564
c7a1f78
f748564
 
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
 
 
 
 
 
 
 
 
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
 
 
c7a1f78
f748564
 
c7a1f78
f748564
c7a1f78
f748564
 
 
 
 
c7a1f78
f748564
c7a1f78
f748564
 
c7a1f78
f748564
 
 
 
c7a1f78
f748564
 
 
 
 
 
c7a1f78
f748564
 
 
 
c7a1f78
f748564
 
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78fb48b
 
 
 
 
 
 
f748564
939ee59
 
 
f748564
939ee59
 
 
 
 
 
 
 
f748564
939ee59
f748564
939ee59
 
 
 
f748564
 
 
939ee59
 
 
 
 
f748564
 
 
939ee59
 
 
 
 
 
 
 
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
 
 
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
 
c7a1f78
f748564
c7a1f78
f748564
c7a1f78
f748564
 
 
 
 
 
 
 
c7a1f78
f748564
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
base_model_relation: finetune
library_name: peft
language:
- en
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
license: gpl-3.0
datasets:
- nvidia/OpenCodeReasoning
pipeline_tag: text-generation
license_link: https://huggingface.co/bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning/blob/main/LICENSE
---

# Qwen2.5-Coder-1.5B-Instruct-Reasoning

The `Qwen2.5-Coder-1.5B-Instruct-Reasoning` model has been supervised fine-tuned (SFT) on the `nvidia/OpenCodeReasoning`
dataset to enhance its reasoning capabilities.

---

### TableofContents

- [Usage](#usage)
- [Dataset](#dataset)
- [Training](#training)
- [License](#licence)
- [Links](#links)
- [Team](#team)
- [Contact](#contact)
- [Reference](#reference)
- [Citation](#citation)

---

### Usage

#### Hugging Face

```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer

base_model_name = "Qwen/Qwen2.5-Coder-1.5B-Instruct"
adapter_repo = "bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning"

tokenizer = AutoTokenizer.from_pretrained(adapter_repo, trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    base_model_name,
    device_map="auto",
    torch_dtype="auto",
)

model.resize_token_embeddings(len(tokenizer))

model = PeftModel.from_pretrained(model, adapter_repo)
model.eval()

messages = [
    {"role": "system", "content": "You are a helpful coding assistant."},
    {"role": "user", "content": "write a quick sort algorithm."}
]

prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

outputs = model.generate(
    **inputs,
    max_new_tokens=2048
)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

---

### Dataset

- [nvidia/OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning)

---

### Training

#### Base

| Parameter                   | Value                              |
|-----------------------------|------------------------------------|
| Base Model                  | `Qwen/Qwen2.5-Coder-1.5B-Instruct` |
| Fine-tuning Method          | QLoRA                              |
| Task Type                   | `CAUSAL_LM`                        |
| Number of Epochs            | `3`                                |
| Batch Size                  | `1`                                |
| Gradient Accumulation Steps | `1`                                |
| Effective Batch Size        | `1`                                |
| Learning Rate               | `2e-4`                             |
| LR Scheduler Type           | `cosine`                           |
| Warmup Ratio                | `0.05`                             |
| Precision                   | `FP16 Mixed Precision`             |
| Gradient Checkpointing      | `True`                             |
| Completion-Only Loss        | `True`                             |
| Packing                     | `False`                            |
| Max Sequence Length         | `8192 tokens`                      |
| Logging Steps               | every `10000` steps                |
| Save Checkpoint Steps       | every `10000` steps                |
| Output Directory            | `.model`                           |

#### PEFT/LoRA

| Parameter       | Value                                                                       |
|-----------------|-----------------------------------------------------------------------------|
| LoRA Rank (`r`) | `16`                                                                        |
| LoRA Alpha      | `32`                                                                        |
| LoRA Dropout    | `0.05`                                                                      |
| LoRA Bias       | `none`                                                                      |
| Task Type       | `CAUSAL_LM`                                                                 |
| Target Modules  | `q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj` |
| Modules to Save | `embed_tokens`, `lm_head`                                                   |

#### Model

| Parameter                 | Value                              |
|---------------------------|------------------------------------|
| Name                      | `Qwen/Qwen2.5-Coder-1.5B-Instruct` |
| Attention Implementation  | `flash_attention_2`                |
| load_in_4bit              | `true`                             |
| bnb_4bit_quant_type       | `nf4`                              |
| bnb_4bit_use_double_quant | `true`                             |

Aşağıda her başlık için ayrı birer tablo oluşturdum:

#### Dataset

| Parameter            | Value                          |
|----------------------|--------------------------------|
| Dataset Name         | `nvidia/OpenCodeReasoning`     |
| Split                | `split_0`                      |
| Number of Rows       | `8000`                         |
| Max Token Length     | `8192`                         |
| Shuffle              | `True`                         |
| Number of Processes  | `4`                            |

#### Tokenizer

| Parameter                      | Value                         |
|--------------------------------|-------------------------------|
| Truncation                     | Enabled (`max_length=8192`)   |
| Masked Language Modeling (MLM) | `False`                       |

#### Speeds, Sizes, Times

| Parameter               | Value                                                       |
|-------------------------|-------------------------------------------------------------|
| Total Training Time     | ~3.5 hours                                                  |
| Checkpoint Frequency    | every `10000` steps                                         |
| Checkpoint Steps        | `checkpoint-10000`, `checkpoint-20000`, `checkpoint-24000`  |

#### Compute Infrastructure

| Parameter    | Value                                |
|--------------|--------------------------------------|
| GPU          | 1 × NVIDIA H100 SXM (80 GB VRAM)     |
| RAM          | 125 GB                               |
| CPU          | 16 vCPU                              |
| OS           | Ubuntu 22.04                         |
| Frameworks   | PyTorch 2.4.0                        |
| CUDA Version | 12.4.1                               |

---

### Licence

- [LICENSE](LICENSE)

---

### Links

- [Github](https://github.com/bunyaminergen/)
- [Website](https://bunyaminergen.com)
- [Linkedin](https://www.linkedin.com/in/bunyaminergen)

---

### Team

- [Bunyamin Ergen](https://www.linkedin.com/in/bunyaminergen)

---

### Contact

- [Mail](mailto:info@bunyaminergen.com)

---

### Reference

- This model has been fine-tuned using Supervised Fine Tuning (SFT) method from the original
  model [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct).

---

### Citation

```bibtex
@software{       Qwen2.5-Coder-1.5B-Instruct-Reasoning,
  author       = {Bunyamin Ergen},
  title        = {{Qwen2.5-Coder-1.5B-Instruct-Reasoning}},
  year         = {2025},
  month        = {04},
}
```

---