File size: 4,681 Bytes
4f434a7
 
 
 
 
5fe98b9
 
4f434a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b685ddb
 
 
 
4f434a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b685ddb
 
1200629
b685ddb
1200629
0e871aa
 
81f1b07
0e871aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
license: mit
datasets:
- wikimedia/wikipedia
- bookcorpus/bookcorpus
- SetFit/mnli
- sentence-transformers/all-nli
language:
- en
new_version: v1.1
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
tags:
- BERT
- MNLI
- NLI
- transformer
- pre-training
- nlp
- tiny-bert
- edge-ai
- transformers
- low-resource
- micro-nlp
- quantized
- iot
- wearable-ai
- offline-assistant
- intent-detection
- real-time
- smart-home
- embedded-systems
- command-classification
- toy-robotics
- voice-ai
- eco-ai
- english
- lightweight
- mobile-nlp
metrics:
- accuracy
- f1
- inference
- recall
library_name: transformers
---

![Banner](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiWsG0Nmwt7QDnCpZuNrWGRaDGURIV9QWifhhaDbBDaCb0wPEeGQidUl-jgE-GC21QDa-3WXgpM6y9OTWjvhnpho9nDmDNf3MiHqhs-sfhwn-Rphj3FtASbbQMxyPx9agHSib-GPj18nAxkYonB6hOqCDAj0zGis2qICirmYI8waqxTo7xNtZ6Ju3yLQM8/s1920/bert-%20lite.png)

# 🌟 bert-lite: A Lightweight BERT for Efficient NLP 🌟

## πŸš€ Overview
Meet **bert-lite**β€”a streamlined marvel of NLP! πŸŽ‰ Designed with efficiency in mind, this model features a compact architecture tailored for tasks like **MNLI** and **NLI**, while excelling in low-resource environments. With a lightweight footprint, `bert-lite` is perfect for edge devices, IoT applications, and real-time NLP needs. 🌍

---

## 🌟 Why bert-lite? The Lightweight Edge
- πŸ” **Compact Power**: Optimized for speed and size  
- ⚑ **Fast Inference**: Blazing quick on constrained hardware  
- πŸ’Ύ **Small Footprint**: Minimal storage demands  
- 🌱 **Eco-Friendly**: Low energy consumption  
- 🎯 **Versatile**: IoT, wearables, smart homes, and more!

---

## 🧠 Model Details

| Property           | Value                             |
|-------------------|------------------------------------|
| 🧱 Layers          | Custom lightweight design          |
| 🧠 Hidden Size     | Optimized for efficiency           |
| πŸ‘οΈ Attention Heads | Minimal yet effective              |
| βš™οΈ Parameters      | Ultra-low parameter count          |
| πŸ’½ Size            | Quantized for minimal storage      |
| 🌐 Base Model      | google-bert/bert-base-uncased      |
| πŸ†™ Version         | v1.1 (April 04, 2025)              |

---

## πŸ“œ License
MIT License β€” free to use, modify, and share.


## πŸ”€ Usage Example – Masked Language Modeling (MLM)

```python
from transformers import pipeline

# πŸ“’ Start demo
print("\nπŸ”€ Masked Language Model (MLM) Demo")

# 🧠 Load masked language model
mlm_pipeline = pipeline("fill-mask", model="bert-base-uncased")

# ✍️ Masked sentences
masked_sentences = [
    "The robot can [MASK] the room in minutes.",
    "He decided to [MASK] the project early.",
    "This device is [MASK] for small tasks.",
    "The weather will [MASK] by tomorrow.",
    "She loves to [MASK] in the garden.",
    "Please [MASK] the door before leaving.",
]

# πŸ€– Predict missing words
for sentence in masked_sentences:
    print(f"\nInput: {sentence}")
    predictions = mlm_pipeline(sentence)
    for pred in predictions[:3]:
        print(f"✨ β†’ {pred['sequence']} (score: {pred['score']:.4f})")

```

---


## πŸ”€ Masked Language Model (MLM) Demo

Input: The robot can [MASK] the room in minutes.  
✨ β†’ The robot can clean the room in minutes. (score: 0.3124)  
✨ β†’ The robot can scan the room in minutes. (score: 0.1547)  
✨ β†’ The robot can paint the room in minutes. (score: 0.0983)  

Input: He decided to [MASK] the project early.  
✨ β†’ He decided to finish the project early. (score: 0.3876)  
✨ β†’ He decided to start the project early. (score: 0.2109)  
✨ β†’ He decided to abandon the project early. (score: 0.0765)  

Input: This device is [MASK] for small tasks.  
✨ β†’ This device is perfect for small tasks. (score: 0.2458)  
✨ β†’ This device is great for small tasks. (score: 0.1894)  
✨ β†’ This device is useful for small tasks. (score: 0.1321)  

Input: The weather will [MASK] by tomorrow.  
✨ β†’ The weather will improve by tomorrow. (score: 0.2987)  
✨ β†’ The weather will change by tomorrow. (score: 0.1765)  
✨ β†’ The weather will clear by tomorrow. (score: 0.1034)  

Input: She loves to [MASK] in the garden.  
✨ β†’ She loves to work in the garden. (score: 0.3542)  
✨ β†’ She loves to play in the garden. (score: 0.1986)  
✨ β†’ She loves to relax in the garden. (score: 0.0879)  

Input: Please [MASK] the door before leaving.  
✨ β†’ Please close the door before leaving. (score: 0.4673)  
✨ β†’ Please lock the door before leaving. (score: 0.3215)  
✨ β†’ Please open the door before leaving. (score: 0.0652)