Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- bert
|
5 |
+
- pytorch
|
6 |
+
- tensorflow-converted
|
7 |
+
- uncased
|
8 |
+
license: apache-2.0
|
9 |
+
model-index:
|
10 |
+
- name: uncased_L-10_H-256_A-4
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
# BERT uncased_L-10_H-256_A-4
|
15 |
+
|
16 |
+
This model is a PyTorch conversion of the original TensorFlow BERT checkpoint.
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
|
20 |
+
- **Model Type**: BERT (Bidirectional Encoder Representations from Transformers)
|
21 |
+
- **Language**: English (uncased)
|
22 |
+
- **Architecture**:
|
23 |
+
- Layers: 10
|
24 |
+
- Hidden Size: 256
|
25 |
+
- Attention Heads: 4
|
26 |
+
- Vocabulary Size: 30522
|
27 |
+
- Max Position Embeddings: 512
|
28 |
+
|
29 |
+
## Model Configuration
|
30 |
+
|
31 |
+
```json
|
32 |
+
{
|
33 |
+
"hidden_size": 256,
|
34 |
+
"hidden_act": "gelu",
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"vocab_size": 30522,
|
37 |
+
"hidden_dropout_prob": 0.1,
|
38 |
+
"num_attention_heads": 4,
|
39 |
+
"type_vocab_size": 2,
|
40 |
+
"max_position_embeddings": 512,
|
41 |
+
"num_hidden_layers": 10,
|
42 |
+
"intermediate_size": 1024,
|
43 |
+
"attention_probs_dropout_prob": 0.1
|
44 |
+
}
|
45 |
+
```
|
46 |
+
|
47 |
+
## Usage
|
48 |
+
|
49 |
+
```python
|
50 |
+
from transformers import BertForPreTraining, BertTokenizer
|
51 |
+
|
52 |
+
# Load the model and tokenizer
|
53 |
+
model = BertForPreTraining.from_pretrained('bansalaman18/uncased_L-10_H-256_A-4')
|
54 |
+
tokenizer = BertTokenizer.from_pretrained('bansalaman18/uncased_L-10_H-256_A-4')
|
55 |
+
|
56 |
+
# Example usage
|
57 |
+
text = "Hello, this is a sample text for BERT."
|
58 |
+
inputs = tokenizer(text, return_tensors='pt')
|
59 |
+
outputs = model(**inputs)
|
60 |
+
```
|
61 |
+
|
62 |
+
## Training Data
|
63 |
+
|
64 |
+
This model was originally trained on the same data as the standard BERT models:
|
65 |
+
- English Wikipedia (2500M words)
|
66 |
+
- BookCorpus (800M words)
|
67 |
+
|
68 |
+
## Conversion Details
|
69 |
+
|
70 |
+
This model was converted from the original TensorFlow checkpoint to PyTorch format using a custom conversion script with the Hugging Face Transformers library.
|
71 |
+
|
72 |
+
## Citation
|
73 |
+
|
74 |
+
```bibtex
|
75 |
+
@article{devlin2018bert,
|
76 |
+
title={BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding},
|
77 |
+
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
|
78 |
+
journal={arXiv preprint arXiv:1810.04805},
|
79 |
+
year={2018}
|
80 |
+
}
|
81 |
+
```
|