--- license: other license_link: LICENSE language: - en - zh pipeline_tag: image-text-to-text library_name: transformers tags: - multimodal --- # Qianfan-VL: Domain-Enhanced Universal Vision-Language Models Domain Capability Enhancement through Continuous Pre-training | 3B to 70B Parameter Scale | Document Understanding & OCR Enhancement | Chain-of-Thought Reasoning Support ## 🔗 Quick Links - **Repository**: [💻 GitHub](https://github.com/baidubce/Qianfan-VL) - **Models**: [🤗 Hugging Face](https://huggingface.co/baidu) | [🤖 ModelScope](https://modelscope.cn/organization/baidu-qianfan) - **Documentation**: [📚 Cookbook](https://github.com/baidubce/qianfan-models-cookbook) | [📝 Technical Report](https://github.com/baidubce/Qianfan-VL/blob/main/docs/qianfan_vl_report_comp.pdf) - **Blogs**: [🇨🇳 中文博客](https://baidubce.github.io/Qianfan-VL/) | [🇬🇧 English Blog](https://baidubce.github.io/Qianfan-VL/index_en.html) ## Model Description Qianfan-VL is a series of general-purpose multimodal large language models enhanced for enterprise-level multimodal applications. The models offer deep optimization for high-frequency scenarios in industrial deployment while maintaining strong general capabilities. ### Model Variants | Model | Parameters | Context Length | CoT Support | Best For | | ------------------ | ---------- | -------------- | ----------- | ------------------------------------------ | | **Qianfan-VL-3B** | 3B | 32k | ❌ | Edge deployment, real-time OCR | | **Qianfan-VL-8B** | 8B | 32k | ✅ | Server-side general scenarios, fine-tuning | | **Qianfan-VL-70B** | 70B | 32k | ✅ | Complex reasoning, data synthesis | ### Architecture - **Language Model**: - Qianfan-VL-3B: Based on Qwen2.5-3B - Qianfan-VL-8B/70B: Based on Llama 3.1 architecture - Enhanced with 3T multilingual corpus - **Vision Encoder**: InternViT-based, supports dynamic patching up to 4K resolution - **Cross-modal Fusion**: MLP adapter for efficient vision-language bridging ## Key Capabilities ### 🔍 OCR & Document Understanding - **Full-Scenario OCR**: Handwriting, formulas, natural scenes, cards/documents - **Document Intelligence**: Layout analysis, table parsing, chart understanding, document Q&A - **High Precision**: Industry-leading performance on OCR benchmarks ### 🧮 Chain-of-Thought Reasoning (8B & 70B) - Complex chart analysis and reasoning - Mathematical problem-solving with step-by-step derivation - Visual reasoning and logical inference - Statistical computation and trend prediction ### 📊 Benchmark Performance #### General Vision-Language Benchmarks | Benchmark | Qianfan-VL-3B | Qianfan-VL-8B | Qianfan-VL-70B | InternVL-3-8B | InternVL-3-78B | Qwen2.5-VL-7B | Qwen2.5-VL-72B | | --------------- | ------------- | ------------- | -------------- | ------------- | -------------- | ------------- | -------------- | | A-Bench_VAL | 75.65 | 75.72 | **78.1** | 75.86 | 75.86 | 76.49 | **79.22** | | CCBench | 66.86 | 70.39 | **80.98** | 77.84 | 70.78 | 57.65 | 73.73 | | SEEDBench_IMG | 76.55 | 78.02 | **79.13** | 77.0 | 77.52 | 76.98 | 78.34 | | SEEDBench2_Plus | 67.59 | 70.97 | **73.17** | 69.52 | 68.47 | 70.93 | 73.25 | | MMVet | 48.17 | 53.21 | 67.34 | **80.28** | 78.9 | 70.64 | 75.69 | | MMMU_VAL | 46.44 | 47.11 | 58.33 | 56.11 | **60.78** | 51.0 | **65.78** | | ScienceQA_TEST | 95.19 | 97.62 | **98.76** | 97.97 | 97.17 | 85.47 | 92.51 | | ScienceQA_VAL | 93.85 | 97.62 | **98.81** | **97.81** | 95.14 | 83.59 | 91.32 | | MMT-Bench_VAL | 62.23 | 63.22 | **71.06** | 65.17 | 63.67 | 61.4 | 69.49 | | MTVQA_TEST | 26.5 | 30.14 | **32.18** | 30.3 | 27.62 | 29.08 | **31.48** | | BLINK | 49.97 | 56.81 | **59.44** | 55.87 | 51.87 | 54.55 | **63.02** | | MMStar | 57.93 | 64.07 | **69.47** | 68.4 | 66.07 | 61.53 | 66.0 | | RealWorldQA | 65.75 | 70.59 | 71.63 | 71.11 | **74.25** | 69.28 | **73.86** | | Q-Bench1_VAL | 73.51 | 75.25 | 77.46 | 75.99 | **77.99** | **78.1** | **79.93** | | POPE | 85.08 | 86.06 | 88.97 | **90.59** | 88.87 | 85.97 | 83.35 | | RefCOCO (Avg) | 85.94 | 89.37 | **91.01** | 89.65 | **91.40** | 86.56 | 90.25 | #### OCR & Document Understanding | Benchmark | Qianfan-VL-3B | Qianfan-VL-8B | Qianfan-VL-70B | InternVL-3-8B | InternVL-3-78B | Qwen2.5-VL-3B | Qwen2.5-VL-7B | Qwen2.5-VL-72B | | ------------ | ------------- | ------------- | -------------- | ------------- | -------------- | ------------- | ------------- | -------------- | | OCRBench | 831 | 854 | 873 | **881** | 847 | 810 | **883** | 874 | | AI2D_TEST | 81.38 | **85.07** | **87.23** | **85.07** | 83.55 | 77.07 | 80.472 | 83.84 | | OCRVQA_TEST | 66.15 | 68.98 | **74.06** | 39.03 | 35.58 | 69.24 | **71.02** | 66.8 | | TextVQA_VAL | 80.11 | 82.13 | **84.48** | 82.15 | 83.52 | 79.09 | **84.962** | 83.26 | | DocVQA_VAL | 90.85 | 93.54 | 94.75 | 92.04 | 83.82 | 92.71 | **94.91** | **95.75** | | ChartQA_TEST | 81.79 | **87.72** | **89.6** | 85.76 | 82.04 | 83.4 | 86.68 | 87.16 | #### Mathematical Reasoning | Benchmark | Qianfan-VL-8B | Qianfan-VL-70B | InternVL-3-8B | InternVL-3-78B | Qwen2.5-VL-7B | Qwen2.5-VL-72B | | ----------------- | ------------- | -------------- | ------------- | -------------- | ------------- | -------------- | | Mathvista-mini | 69.19 | **78.6** | 69.5 | 70.1 | 67.2 | 73.9 | | Mathvision | 32.82 | **50.29** | 29.61 | 34.8 | 25.95 | 39.34 | | Mathverse | 48.4 | **61.04** | 43.68 | 49.26 | 44.21 | 55.18 | | ChartQA Pro | 50.43 | **52** | 37.32 | 44.43 | 43.73 | 45.3 | | HallusionBench | 51.72 | **54.52** | 49.2 | 40.2 | 47.9 | 49.9 | | InHouse Dataset A | 59.87 | **71.78** | 40.64 | 41.47 | 45.58 | 57.2 | | InHouse Dataset B | 61.33 | **75.6** | 36.25 | 42.65 | 30.62 | 59.68 | ## Quick Start ### Installation ```bash pip install transformers accelerate torch torchvision pillow einops ``` ### Using Transformers ```python import torch import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer from PIL import Image IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values # Load model MODEL_PATH = "baidu/Qianfan-VL-8B" # or Qianfan-VL-3B, Qianfan-VL-70B model = AutoModel.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto" ).eval() tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) # Load and process image pixel_values = load_image("./example/scene_ocr.png").to(torch.bfloat16) # Inference prompt = "请识别图中所有文字" with torch.no_grad(): response = model.chat( tokenizer, pixel_values=pixel_values, question=prompt, generation_config={"max_new_tokens": 512}, verbose=False ) print(response) ``` ### Using vLLM You can deploy Qianfan-VL using vLLM's official Docker image for high-performance inference with an OpenAI-compatible API: #### Start vLLM Service ```bash docker run -d --name qianfan-vl \ --gpus all \ -v /path/to/Qianfan-VL-8B:/model \ -p 8000:8000 \ --ipc=host \ vllm/vllm-openai:latest \ --model /model \ --served-model-name qianfan-vl \ --trust-remote-code \ --hf-overrides '{"architectures":["InternVLChatModel"],"model_type":"internvl_chat"}' ``` #### Call the API ```bash curl 'http://127.0.0.1:8000/v1/chat/completions' \ --header 'Content-Type: application/json' \ --data '{ "model": "qianfan-vl", "messages": [ { "role": "user", "content": [ { "type": "image_url", "image_url": { "url": "https://qianfan-public-demo.bj.bcebos.com/qianfan-vl/2509/images/scene_ocr.png" } }, { "type": "text", "text": "请识别图中所有文字" } ] } ] }' ``` Or use Python with OpenAI SDK: ```python from openai import OpenAI client = OpenAI( api_key="EMPTY", base_url="http://127.0.0.1:8000/v1" ) response = client.chat.completions.create( model="qianfan-vl", messages=[ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": "https://qianfan-public-demo.bj.bcebos.com/qianfan-vl/2509/images/scene_ocr.png"} }, { "type": "text", "text": "请描述这张图片" } ] } ], max_tokens=512 ) print(response.choices[0].message.content) ``` ## Training Details ### Four-Stage Progressive Training 1. **Cross-modal Alignment** (100B tokens): Establishes vision-language connections 2. **General Knowledge Injection** (3.5T tokens): Builds strong foundational capabilities 3. **Domain Enhancement** (300B tokens): Specialized OCR and reasoning capabilities 4. **Post-training** (1B tokens): Instruction following and preference alignment ### Infrastructure - Trained on 5000+ Baidu Kunlun chips - Single-task parallel training with 5000 chips demonstrating unprecedented scale - 90%+ scaling efficiency for large-scale distributed training - Innovative communication-computation fusion technology ## Model Card - **Developed by**: Baidu AI Cloud Qianfan Team - **Model type**: Vision-Language Transformer - **Languages**: Multilingual support - **License**: [Please check model card for specific license] - **Base Architecture**: Please Reference Technical Report ## Citation If you use Qianfan-VL in your research, please cite: ```bibtex @misc{qianfan-vl-2025, title={Qianfan-VL: Domain-Enhanced Universal Vision-Language Models}, author={Qianfan Team}, year={2025}, publisher={Baidu} } ``` ## Contact For more information and API access, visit: [Baidu Qianfan Platform](https://qianfan.cloud.baidu.com/) ## Acknowledgments This model series represents a significant advancement in multimodal AI, combining general capabilities with domain-specific enhancements for real-world applications.