Upload folder using huggingface_hub
Browse files- LICENSE +2 -2
- README.md +336 -0
- configuration_qianfanvl_chat.py +1 -1
- modeling_qianfanvl_chat.py +1 -1
LICENSE
CHANGED
@@ -6,7 +6,7 @@ Composite License: MIT (for Original Contributions) + Qwen Research License (for
|
|
6 |
|
7 |
MIT License
|
8 |
|
9 |
-
Copyright (c) 2025
|
10 |
|
11 |
Permission is hereby granted, free of charge, to any person obtaining a copy
|
12 |
of this software and associated documentation files (the "Software"), to deal
|
@@ -86,6 +86,6 @@ You may distribute copies or make the Materials, or derivative works thereof, av
|
|
86 |
|
87 |
|
88 |
=== Scope Clarification (Non-operative summary) ===
|
89 |
-
- Section A (MIT) covers only the Project’s original contributions authored by
|
90 |
- Section B (Qwen Research License) governs any included Qwen Materials and any derivatives thereof (e.g., fine-tuned weights).
|
91 |
- In the event of any conflict, the applicable license for the relevant component controls (MIT for original contributions; Qwen Research License for Qwen Materials).
|
|
|
6 |
|
7 |
MIT License
|
8 |
|
9 |
+
Copyright (c) 2025 Baidu
|
10 |
|
11 |
Permission is hereby granted, free of charge, to any person obtaining a copy
|
12 |
of this software and associated documentation files (the "Software"), to deal
|
|
|
86 |
|
87 |
|
88 |
=== Scope Clarification (Non-operative summary) ===
|
89 |
+
- Section A (MIT) covers only the Project’s original contributions authored by Baidu.
|
90 |
- Section B (Qwen Research License) governs any included Qwen Materials and any derivatives thereof (e.g., fine-tuned weights).
|
91 |
- In the event of any conflict, the applicable license for the relevant component controls (MIT for original contributions; Qwen Research License for Qwen Materials).
|
README.md
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_link: LICENSE
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
- zh
|
7 |
+
pipeline_tag: image-text-to-text
|
8 |
+
library_name: transformers
|
9 |
+
tags:
|
10 |
+
- multimodal
|
11 |
+
---
|
12 |
+
# Qianfan-VL: Domain-Enhanced Universal Vision-Language Models
|
13 |
+
|
14 |
+
Domain Capability Enhancement through Continuous Pre-training | 3B to 70B Parameter Scale | Document Understanding & OCR Enhancement | Chain-of-Thought Reasoning Support
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
|
18 |
+
Qianfan-VL is a series of general-purpose multimodal large language models enhanced for enterprise-level multimodal applications. The models offer deep optimization for high-frequency scenarios in industrial deployment while maintaining strong general capabilities.
|
19 |
+
|
20 |
+
### Model Variants
|
21 |
+
|
22 |
+
| Model | Parameters | Context Length | CoT Support | Best For |
|
23 |
+
| ------------------ | ---------- | -------------- | ----------- | ------------------------------------------ |
|
24 |
+
| **Qianfan-VL-3B** | 3B | 32k | ❌ | Edge deployment, real-time OCR |
|
25 |
+
| **Qianfan-VL-8B** | 8B | 32k | ✅ | Server-side general scenarios, fine-tuning |
|
26 |
+
| **Qianfan-VL-70B** | 70B | 32k | ✅ | Complex reasoning, data synthesis |
|
27 |
+
|
28 |
+
### Architecture
|
29 |
+
|
30 |
+
- **Language Model**:
|
31 |
+
- Qianfan-VL-3B: Based on Qwen2.5-3B
|
32 |
+
- Qianfan-VL-8B/70B: Based on Llama 3.1 architecture
|
33 |
+
- Enhanced with 3T multilingual corpus
|
34 |
+
- **Vision Encoder**: InternViT-based, supports dynamic patching up to 4K resolution
|
35 |
+
- **Cross-modal Fusion**: MLP adapter for efficient vision-language bridging
|
36 |
+
|
37 |
+
## Key Capabilities
|
38 |
+
|
39 |
+
### 🔍 OCR & Document Understanding
|
40 |
+
|
41 |
+
- **Full-Scenario OCR**: Handwriting, formulas, natural scenes, cards/documents
|
42 |
+
- **Document Intelligence**: Layout analysis, table parsing, chart understanding, document Q&A
|
43 |
+
- **High Precision**: Industry-leading performance on OCR benchmarks
|
44 |
+
|
45 |
+
### 🧮 Chain-of-Thought Reasoning (8B & 70B)
|
46 |
+
|
47 |
+
- Complex chart analysis and reasoning
|
48 |
+
- Mathematical problem-solving with step-by-step derivation
|
49 |
+
- Visual reasoning and logical inference
|
50 |
+
- Statistical computation and trend prediction
|
51 |
+
|
52 |
+
### 📊 Benchmark Performance
|
53 |
+
|
54 |
+
#### General Vision-Language Benchmarks
|
55 |
+
|
56 |
+
| Benchmark | Qianfan-VL-3B | Qianfan-VL-8B | Qianfan-VL-70B | InternVL-3-8B | InternVL-3-78B | Qwen2.5-VL-7B | Qwen2.5-VL-72B |
|
57 |
+
| --------------- | ------------- | ------------- | -------------- | ------------- | -------------- | ------------- | -------------- |
|
58 |
+
| A-Bench_VAL | 75.65 | 75.72 | **78.1** | 75.86 | 75.86 | 76.49 | **79.22** |
|
59 |
+
| CCBench | 66.86 | 70.39 | **80.98** | 77.84 | 70.78 | 57.65 | 73.73 |
|
60 |
+
| SEEDBench_IMG | 76.55 | 78.02 | **79.13** | 77.0 | 77.52 | 76.98 | 78.34 |
|
61 |
+
| SEEDBench2_Plus | 67.59 | 70.97 | **73.17** | 69.52 | 68.47 | 70.93 | 73.25 |
|
62 |
+
| MMVet | 48.17 | 53.21 | 67.34 | **80.28** | 78.9 | 70.64 | 75.69 |
|
63 |
+
| MMMU_VAL | 46.44 | 47.11 | 58.33 | 56.11 | **60.78** | 51.0 | **65.78** |
|
64 |
+
| ScienceQA_TEST | 95.19 | 97.62 | **98.76** | 97.97 | 97.17 | 85.47 | 92.51 |
|
65 |
+
| ScienceQA_VAL | 93.85 | 97.62 | **98.81** | **97.81** | 95.14 | 83.59 | 91.32 |
|
66 |
+
| MMT-Bench_VAL | 62.23 | 63.22 | **71.06** | 65.17 | 63.67 | 61.4 | 69.49 |
|
67 |
+
| MTVQA_TEST | 26.5 | 30.14 | **32.18** | 30.3 | 27.62 | 29.08 | **31.48** |
|
68 |
+
| BLINK | 49.97 | 56.81 | **59.44** | 55.87 | 51.87 | 54.55 | **63.02** |
|
69 |
+
| MMStar | 57.93 | 64.07 | **69.47** | 68.4 | 66.07 | 61.53 | 66.0 |
|
70 |
+
| RealWorldQA | 65.75 | 70.59 | 71.63 | 71.11 | **74.25** | 69.28 | **73.86** |
|
71 |
+
| Q-Bench1_VAL | 73.51 | 75.25 | 77.46 | 75.99 | **77.99** | **78.1** | **79.93** |
|
72 |
+
| POPE | 85.08 | 86.06 | 88.97 | **90.59** | 88.87 | 85.97 | 83.35 |
|
73 |
+
| RefCOCO (Avg) | 85.94 | 89.37 | **91.01** | 89.65 | **91.40** | 86.56 | 90.25 |
|
74 |
+
|
75 |
+
#### OCR & Document Understanding
|
76 |
+
|
77 |
+
| Benchmark | Qianfan-VL-3B | Qianfan-VL-8B | Qianfan-VL-70B | InternVL-3-8B | InternVL-3-78B | Qwen2.5-VL-3B | Qwen2.5-VL-7B | Qwen2.5-VL-72B |
|
78 |
+
| ------------ | ------------- | ------------- | -------------- | ------------- | -------------- | ------------- | ------------- | -------------- |
|
79 |
+
| OCRBench | 831 | 854 | 873 | **881** | 847 | 810 | **883** | 874 |
|
80 |
+
| AI2D_TEST | 81.38 | **85.07** | **87.23** | **85.07** | 83.55 | 77.07 | 80.472 | 83.84 |
|
81 |
+
| OCRVQA_TEST | 66.15 | 68.98 | **74.06** | 39.03 | 35.58 | 69.24 | **71.02** | 66.8 |
|
82 |
+
| TextVQA_VAL | 80.11 | 82.13 | **84.48** | 82.15 | 83.52 | 79.09 | **84.962** | 83.26 |
|
83 |
+
| DocVQA_VAL | 90.85 | 93.54 | 94.75 | 92.04 | 83.82 | 92.71 | **94.91** | **95.75** |
|
84 |
+
| ChartQA_TEST | 81.79 | **87.72** | **89.6** | 85.76 | 82.04 | 83.4 | 86.68 | 87.16 |
|
85 |
+
|
86 |
+
#### Mathematical Reasoning
|
87 |
+
|
88 |
+
| Benchmark | Qianfan-VL-8B | Qianfan-VL-70B | InternVL-3-8B | InternVL-3-78B | Qwen2.5-VL-7B | Qwen2.5-VL-72B |
|
89 |
+
| ----------------- | ------------- | -------------- | ------------- | -------------- | ------------- | -------------- |
|
90 |
+
| Mathvista-mini | 69.19 | **78.6** | 69.5 | 70.1 | 67.2 | 73.9 |
|
91 |
+
| Mathvision | 32.82 | **50.29** | 29.61 | 34.8 | 25.95 | 39.34 |
|
92 |
+
| Mathverse | 48.4 | **61.04** | 43.68 | 49.26 | 44.21 | 55.18 |
|
93 |
+
| ChartQA Pro | 50.43 | **52** | 37.32 | 44.43 | 43.73 | 45.3 |
|
94 |
+
| HallusionBench | 51.72 | **54.52** | 49.2 | 40.2 | 47.9 | 49.9 |
|
95 |
+
| InHouse Dataset A | 59.87 | **71.78** | 40.64 | 41.47 | 45.58 | 57.2 |
|
96 |
+
| InHouse Dataset B | 61.33 | **75.6** | 36.25 | 42.65 | 30.62 | 59.68 |
|
97 |
+
|
98 |
+
## Quick Start
|
99 |
+
|
100 |
+
### Installation
|
101 |
+
|
102 |
+
```bash
|
103 |
+
pip install transformers accelerate torch torchvision pillow einops
|
104 |
+
```
|
105 |
+
|
106 |
+
### Using Transformers
|
107 |
+
|
108 |
+
```python
|
109 |
+
import torch
|
110 |
+
import torchvision.transforms as T
|
111 |
+
from torchvision.transforms.functional import InterpolationMode
|
112 |
+
from transformers import AutoModel, AutoTokenizer
|
113 |
+
from PIL import Image
|
114 |
+
|
115 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
116 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
117 |
+
|
118 |
+
def build_transform(input_size):
|
119 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
120 |
+
transform = T.Compose([
|
121 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
122 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
123 |
+
T.ToTensor(),
|
124 |
+
T.Normalize(mean=MEAN, std=STD)
|
125 |
+
])
|
126 |
+
return transform
|
127 |
+
|
128 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
129 |
+
best_ratio_diff = float('inf')
|
130 |
+
best_ratio = (1, 1)
|
131 |
+
area = width * height
|
132 |
+
for ratio in target_ratios:
|
133 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
134 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
135 |
+
if ratio_diff < best_ratio_diff:
|
136 |
+
best_ratio_diff = ratio_diff
|
137 |
+
best_ratio = ratio
|
138 |
+
elif ratio_diff == best_ratio_diff:
|
139 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
140 |
+
best_ratio = ratio
|
141 |
+
return best_ratio
|
142 |
+
|
143 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
144 |
+
orig_width, orig_height = image.size
|
145 |
+
aspect_ratio = orig_width / orig_height
|
146 |
+
|
147 |
+
# calculate the existing image aspect ratio
|
148 |
+
target_ratios = set(
|
149 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
150 |
+
i * j <= max_num and i * j >= min_num)
|
151 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
152 |
+
|
153 |
+
# find the closest aspect ratio to the target
|
154 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
155 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
156 |
+
|
157 |
+
# calculate the target width and height
|
158 |
+
target_width = image_size * target_aspect_ratio[0]
|
159 |
+
target_height = image_size * target_aspect_ratio[1]
|
160 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
161 |
+
|
162 |
+
# resize the image
|
163 |
+
resized_img = image.resize((target_width, target_height))
|
164 |
+
processed_images = []
|
165 |
+
for i in range(blocks):
|
166 |
+
box = (
|
167 |
+
(i % (target_width // image_size)) * image_size,
|
168 |
+
(i // (target_width // image_size)) * image_size,
|
169 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
170 |
+
((i // (target_width // image_size)) + 1) * image_size
|
171 |
+
)
|
172 |
+
# split the image
|
173 |
+
split_img = resized_img.crop(box)
|
174 |
+
processed_images.append(split_img)
|
175 |
+
assert len(processed_images) == blocks
|
176 |
+
if use_thumbnail and len(processed_images) != 1:
|
177 |
+
thumbnail_img = image.resize((image_size, image_size))
|
178 |
+
processed_images.append(thumbnail_img)
|
179 |
+
return processed_images
|
180 |
+
|
181 |
+
def load_image(image_file, input_size=448, max_num=12):
|
182 |
+
image = Image.open(image_file).convert('RGB')
|
183 |
+
transform = build_transform(input_size=input_size)
|
184 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
185 |
+
pixel_values = [transform(image) for image in images]
|
186 |
+
pixel_values = torch.stack(pixel_values)
|
187 |
+
return pixel_values
|
188 |
+
|
189 |
+
# Load model
|
190 |
+
MODEL_PATH = "baidu/Qianfan-VL-8B" # or Qianfan-VL-3B, Qianfan-VL-70B
|
191 |
+
model = AutoModel.from_pretrained(
|
192 |
+
MODEL_PATH,
|
193 |
+
torch_dtype=torch.bfloat16,
|
194 |
+
trust_remote_code=True,
|
195 |
+
device_map="auto"
|
196 |
+
).eval()
|
197 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
198 |
+
|
199 |
+
# Load and process image
|
200 |
+
pixel_values = load_image("./example/scene_ocr.png").to(torch.bfloat16)
|
201 |
+
|
202 |
+
# Inference
|
203 |
+
prompt = "<image>请识别图中所有文字"
|
204 |
+
with torch.no_grad():
|
205 |
+
response = model.chat(
|
206 |
+
tokenizer,
|
207 |
+
pixel_values=pixel_values,
|
208 |
+
question=prompt,
|
209 |
+
generation_config={"max_new_tokens": 512},
|
210 |
+
verbose=False
|
211 |
+
)
|
212 |
+
print(response)
|
213 |
+
```
|
214 |
+
|
215 |
+
### Using vLLM
|
216 |
+
|
217 |
+
You can deploy Qianfan-VL using vLLM's official Docker image for high-performance inference with an OpenAI-compatible API:
|
218 |
+
|
219 |
+
#### Start vLLM Service
|
220 |
+
|
221 |
+
```bash
|
222 |
+
docker run -d --name qianfan-vl \
|
223 |
+
--gpus all \
|
224 |
+
-v /path/to/Qianfan-VL-8B:/model \
|
225 |
+
-p 8000:8000 \
|
226 |
+
--ipc=host \
|
227 |
+
vllm/vllm-openai:latest \
|
228 |
+
--model /model \
|
229 |
+
--served-model-name qianfan-vl \
|
230 |
+
--trust-remote-code \
|
231 |
+
--hf-overrides '{"architectures":["InternVLChatModel"],"model_type":"internvl_chat"}'
|
232 |
+
```
|
233 |
+
|
234 |
+
#### Call the API
|
235 |
+
|
236 |
+
```bash
|
237 |
+
curl 'http://127.0.0.1:8000/v1/chat/completions' \
|
238 |
+
--header 'Content-Type: application/json' \
|
239 |
+
--data '{
|
240 |
+
"model": "qianfan-vl",
|
241 |
+
"messages": [
|
242 |
+
{
|
243 |
+
"role": "user",
|
244 |
+
"content": [
|
245 |
+
{
|
246 |
+
"type": "image_url",
|
247 |
+
"image_url": {
|
248 |
+
"url": "https://qianfan-public-demo.bj.bcebos.com/qianfan-vl/2509/images/scene_ocr.png"
|
249 |
+
}
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"type": "text",
|
253 |
+
"text": "<image>请识别图中所有文字"
|
254 |
+
}
|
255 |
+
]
|
256 |
+
}
|
257 |
+
]
|
258 |
+
}'
|
259 |
+
```
|
260 |
+
|
261 |
+
Or use Python with OpenAI SDK:
|
262 |
+
|
263 |
+
```python
|
264 |
+
from openai import OpenAI
|
265 |
+
|
266 |
+
client = OpenAI(
|
267 |
+
api_key="EMPTY",
|
268 |
+
base_url="http://127.0.0.1:8000/v1"
|
269 |
+
)
|
270 |
+
|
271 |
+
response = client.chat.completions.create(
|
272 |
+
model="qianfan-vl",
|
273 |
+
messages=[
|
274 |
+
{
|
275 |
+
"role": "user",
|
276 |
+
"content": [
|
277 |
+
{
|
278 |
+
"type": "image_url",
|
279 |
+
"image_url": {"url": "https://qianfan-public-demo.bj.bcebos.com/qianfan-vl/2509/images/scene_ocr.png"}
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"type": "text",
|
283 |
+
"text": "<image>请描述这张图片"
|
284 |
+
}
|
285 |
+
]
|
286 |
+
}
|
287 |
+
],
|
288 |
+
max_tokens=512
|
289 |
+
)
|
290 |
+
print(response.choices[0].message.content)
|
291 |
+
```
|
292 |
+
|
293 |
+
## Training Details
|
294 |
+
|
295 |
+
### Four-Stage Progressive Training
|
296 |
+
|
297 |
+
1. **Cross-modal Alignment** (100B tokens): Establishes vision-language connections
|
298 |
+
2. **General Knowledge Injection** (3.5T tokens): Builds strong foundational capabilities
|
299 |
+
3. **Domain Enhancement** (300B tokens): Specialized OCR and reasoning capabilities
|
300 |
+
4. **Post-training** (1B tokens): Instruction following and preference alignment
|
301 |
+
|
302 |
+
### Infrastructure
|
303 |
+
|
304 |
+
- Trained on 5000+ Baidu Kunlun chips
|
305 |
+
- Single-task parallel training with 5000 chips demonstrating unprecedented scale
|
306 |
+
- 90%+ scaling efficiency for large-scale distributed training
|
307 |
+
- Innovative communication-computation fusion technology
|
308 |
+
|
309 |
+
## Model Card
|
310 |
+
|
311 |
+
- **Developed by**: Baidu AI Cloud Qianfan Team
|
312 |
+
- **Model type**: Vision-Language Transformer
|
313 |
+
- **Languages**: Multilingual support
|
314 |
+
- **License**: [Please check model card for specific license]
|
315 |
+
- **Base Architecture**: Please Reference Technical Report
|
316 |
+
|
317 |
+
## Citation
|
318 |
+
|
319 |
+
If you use Qianfan-VL in your research, please cite:
|
320 |
+
|
321 |
+
```bibtex
|
322 |
+
@misc{qianfan-vl-2025,
|
323 |
+
title={Qianfan-VL: Domain-Enhanced Universal Vision-Language Models},
|
324 |
+
author={Qianfan Team},
|
325 |
+
year={2025},
|
326 |
+
publisher={Baidu}
|
327 |
+
}
|
328 |
+
```
|
329 |
+
|
330 |
+
## Contact
|
331 |
+
|
332 |
+
For more information and API access, visit: [Baidu Qianfan Platform](https://qianfan.cloud.baidu.com/)
|
333 |
+
|
334 |
+
## Acknowledgments
|
335 |
+
|
336 |
+
This model series represents a significant advancement in multimodal AI, combining general capabilities with domain-specific enhancements for real-world applications.
|
configuration_qianfanvl_chat.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright (c) 2025
|
2 |
# Licensed under the MIT License. See LICENSE file in the project root for full license information.
|
3 |
import copy
|
4 |
|
|
|
1 |
+
# Copyright (c) 2025 Baidu
|
2 |
# Licensed under the MIT License. See LICENSE file in the project root for full license information.
|
3 |
import copy
|
4 |
|
modeling_qianfanvl_chat.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright (c) 2025
|
2 |
# Licensed under the MIT License. See LICENSE file in the project root for full license information.
|
3 |
import warnings
|
4 |
from typing import List, Optional, Tuple, Union
|
|
|
1 |
+
# Copyright (c) 2025 Baidu
|
2 |
# Licensed under the MIT License. See LICENSE file in the project root for full license information.
|
3 |
import warnings
|
4 |
from typing import List, Optional, Tuple, Union
|