Training in progress, step 2400, checkpoint
Browse files- checkpoint-2400/config.json +32 -0
- checkpoint-2400/global_step2400/mp_rank_00_model_states.pt +3 -0
- checkpoint-2400/global_step2400/zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-2400/latest +1 -0
- checkpoint-2400/model-00001-of-00002.safetensors +3 -0
- checkpoint-2400/model-00002-of-00002.safetensors +3 -0
- checkpoint-2400/model.safetensors.index.json +396 -0
- checkpoint-2400/rng_state_0.pth +3 -0
- checkpoint-2400/scheduler.pt +3 -0
- checkpoint-2400/special_tokens_map.json +24 -0
- checkpoint-2400/tokenizer.json +0 -0
- checkpoint-2400/tokenizer_config.json +214 -0
- checkpoint-2400/trainer_state.json +1774 -0
- checkpoint-2400/training_args.bin +3 -0
- checkpoint-2400/zero_to_fp32.py +604 -0
checkpoint-2400/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EleutherAI/pythia-2.8b",
|
3 |
+
"architectures": [
|
4 |
+
"GPTNeoForMultipleChoice"
|
5 |
+
],
|
6 |
+
"attention_bias": true,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"classifier_dropout": 0.1,
|
10 |
+
"eos_token_id": 0,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout": 0.0,
|
13 |
+
"hidden_size": 2560,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 10240,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_length": 1024,
|
18 |
+
"max_position_embeddings": 2048,
|
19 |
+
"model_type": "gpt_neox",
|
20 |
+
"num_attention_heads": 32,
|
21 |
+
"num_hidden_layers": 32,
|
22 |
+
"pad_token_id": 0,
|
23 |
+
"rope_scaling": null,
|
24 |
+
"rotary_emb_base": 10000,
|
25 |
+
"rotary_pct": 0.25,
|
26 |
+
"tie_word_embeddings": false,
|
27 |
+
"torch_dtype": "float16",
|
28 |
+
"transformers_version": "4.41.1",
|
29 |
+
"use_cache": true,
|
30 |
+
"use_parallel_residual": true,
|
31 |
+
"vocab_size": 50304
|
32 |
+
}
|
checkpoint-2400/global_step2400/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f81893638ea1c1e67d094caa0ba64c308c68023cba819caa2873cb17704bd947
|
3 |
+
size 5292979768
|
checkpoint-2400/global_step2400/zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b68f329a2e423a8295a4a8669728e5b2901b9a4ab1082ad28d8616286880b210
|
3 |
+
size 15878620944
|
checkpoint-2400/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2400
|
checkpoint-2400/model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd967166b239f4ceb8e4ebef19dc95194614a66ff0560e12cbf462ee1655395a
|
3 |
+
size 4978208880
|
checkpoint-2400/model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c8a243552a54712d1dae8703ff2cac168f143a541e2d21893010832b26187b6
|
3 |
+
size 314703498
|
checkpoint-2400/model.safetensors.index.json
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5292866562
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"classifier.bias": "model-00002-of-00002.safetensors",
|
7 |
+
"classifier.weight": "model-00002-of-00002.safetensors",
|
8 |
+
"gpt_neox.embed_in.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"gpt_neox.final_layer_norm.bias": "model-00002-of-00002.safetensors",
|
10 |
+
"gpt_neox.final_layer_norm.weight": "model-00002-of-00002.safetensors",
|
11 |
+
"gpt_neox.layers.0.attention.dense.bias": "model-00001-of-00002.safetensors",
|
12 |
+
"gpt_neox.layers.0.attention.dense.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"gpt_neox.layers.0.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
14 |
+
"gpt_neox.layers.0.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"gpt_neox.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
16 |
+
"gpt_neox.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
18 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
20 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"gpt_neox.layers.0.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
22 |
+
"gpt_neox.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"gpt_neox.layers.1.attention.dense.bias": "model-00001-of-00002.safetensors",
|
24 |
+
"gpt_neox.layers.1.attention.dense.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"gpt_neox.layers.1.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
26 |
+
"gpt_neox.layers.1.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"gpt_neox.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
28 |
+
"gpt_neox.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
30 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
32 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"gpt_neox.layers.1.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
34 |
+
"gpt_neox.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"gpt_neox.layers.10.attention.dense.bias": "model-00001-of-00002.safetensors",
|
36 |
+
"gpt_neox.layers.10.attention.dense.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"gpt_neox.layers.10.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
38 |
+
"gpt_neox.layers.10.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"gpt_neox.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
40 |
+
"gpt_neox.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
42 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
44 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"gpt_neox.layers.10.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
46 |
+
"gpt_neox.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"gpt_neox.layers.11.attention.dense.bias": "model-00001-of-00002.safetensors",
|
48 |
+
"gpt_neox.layers.11.attention.dense.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"gpt_neox.layers.11.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
50 |
+
"gpt_neox.layers.11.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"gpt_neox.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
52 |
+
"gpt_neox.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
54 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
56 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"gpt_neox.layers.11.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
58 |
+
"gpt_neox.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"gpt_neox.layers.12.attention.dense.bias": "model-00001-of-00002.safetensors",
|
60 |
+
"gpt_neox.layers.12.attention.dense.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"gpt_neox.layers.12.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
62 |
+
"gpt_neox.layers.12.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"gpt_neox.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
64 |
+
"gpt_neox.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
66 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
68 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"gpt_neox.layers.12.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
70 |
+
"gpt_neox.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"gpt_neox.layers.13.attention.dense.bias": "model-00001-of-00002.safetensors",
|
72 |
+
"gpt_neox.layers.13.attention.dense.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"gpt_neox.layers.13.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
74 |
+
"gpt_neox.layers.13.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"gpt_neox.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
76 |
+
"gpt_neox.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
78 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
80 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"gpt_neox.layers.13.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
82 |
+
"gpt_neox.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"gpt_neox.layers.14.attention.dense.bias": "model-00001-of-00002.safetensors",
|
84 |
+
"gpt_neox.layers.14.attention.dense.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"gpt_neox.layers.14.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
86 |
+
"gpt_neox.layers.14.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"gpt_neox.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
88 |
+
"gpt_neox.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
90 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
92 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"gpt_neox.layers.14.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
94 |
+
"gpt_neox.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"gpt_neox.layers.15.attention.dense.bias": "model-00001-of-00002.safetensors",
|
96 |
+
"gpt_neox.layers.15.attention.dense.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"gpt_neox.layers.15.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
98 |
+
"gpt_neox.layers.15.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"gpt_neox.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
100 |
+
"gpt_neox.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
102 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
104 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"gpt_neox.layers.15.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
106 |
+
"gpt_neox.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"gpt_neox.layers.16.attention.dense.bias": "model-00001-of-00002.safetensors",
|
108 |
+
"gpt_neox.layers.16.attention.dense.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"gpt_neox.layers.16.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
110 |
+
"gpt_neox.layers.16.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"gpt_neox.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
112 |
+
"gpt_neox.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
114 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
116 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"gpt_neox.layers.16.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
118 |
+
"gpt_neox.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"gpt_neox.layers.17.attention.dense.bias": "model-00001-of-00002.safetensors",
|
120 |
+
"gpt_neox.layers.17.attention.dense.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"gpt_neox.layers.17.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
122 |
+
"gpt_neox.layers.17.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"gpt_neox.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
124 |
+
"gpt_neox.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
126 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
128 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"gpt_neox.layers.17.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
130 |
+
"gpt_neox.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"gpt_neox.layers.18.attention.dense.bias": "model-00001-of-00002.safetensors",
|
132 |
+
"gpt_neox.layers.18.attention.dense.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"gpt_neox.layers.18.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
134 |
+
"gpt_neox.layers.18.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"gpt_neox.layers.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
136 |
+
"gpt_neox.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
138 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
140 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"gpt_neox.layers.18.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
142 |
+
"gpt_neox.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"gpt_neox.layers.19.attention.dense.bias": "model-00001-of-00002.safetensors",
|
144 |
+
"gpt_neox.layers.19.attention.dense.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"gpt_neox.layers.19.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
146 |
+
"gpt_neox.layers.19.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"gpt_neox.layers.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
148 |
+
"gpt_neox.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
150 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
152 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"gpt_neox.layers.19.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
154 |
+
"gpt_neox.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"gpt_neox.layers.2.attention.dense.bias": "model-00001-of-00002.safetensors",
|
156 |
+
"gpt_neox.layers.2.attention.dense.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"gpt_neox.layers.2.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
158 |
+
"gpt_neox.layers.2.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"gpt_neox.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
160 |
+
"gpt_neox.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
162 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
164 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"gpt_neox.layers.2.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
166 |
+
"gpt_neox.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"gpt_neox.layers.20.attention.dense.bias": "model-00001-of-00002.safetensors",
|
168 |
+
"gpt_neox.layers.20.attention.dense.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"gpt_neox.layers.20.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
170 |
+
"gpt_neox.layers.20.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"gpt_neox.layers.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
172 |
+
"gpt_neox.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
174 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
176 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"gpt_neox.layers.20.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
178 |
+
"gpt_neox.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"gpt_neox.layers.21.attention.dense.bias": "model-00001-of-00002.safetensors",
|
180 |
+
"gpt_neox.layers.21.attention.dense.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"gpt_neox.layers.21.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
182 |
+
"gpt_neox.layers.21.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"gpt_neox.layers.21.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
184 |
+
"gpt_neox.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
186 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
188 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"gpt_neox.layers.21.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
190 |
+
"gpt_neox.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"gpt_neox.layers.22.attention.dense.bias": "model-00001-of-00002.safetensors",
|
192 |
+
"gpt_neox.layers.22.attention.dense.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"gpt_neox.layers.22.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
194 |
+
"gpt_neox.layers.22.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"gpt_neox.layers.22.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
196 |
+
"gpt_neox.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
198 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
200 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"gpt_neox.layers.22.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
202 |
+
"gpt_neox.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"gpt_neox.layers.23.attention.dense.bias": "model-00001-of-00002.safetensors",
|
204 |
+
"gpt_neox.layers.23.attention.dense.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"gpt_neox.layers.23.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
206 |
+
"gpt_neox.layers.23.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"gpt_neox.layers.23.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
208 |
+
"gpt_neox.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
210 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
212 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"gpt_neox.layers.23.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
214 |
+
"gpt_neox.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"gpt_neox.layers.24.attention.dense.bias": "model-00001-of-00002.safetensors",
|
216 |
+
"gpt_neox.layers.24.attention.dense.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"gpt_neox.layers.24.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
218 |
+
"gpt_neox.layers.24.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"gpt_neox.layers.24.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
220 |
+
"gpt_neox.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"gpt_neox.layers.24.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
222 |
+
"gpt_neox.layers.24.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"gpt_neox.layers.24.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
224 |
+
"gpt_neox.layers.24.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
225 |
+
"gpt_neox.layers.24.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
226 |
+
"gpt_neox.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
227 |
+
"gpt_neox.layers.25.attention.dense.bias": "model-00001-of-00002.safetensors",
|
228 |
+
"gpt_neox.layers.25.attention.dense.weight": "model-00001-of-00002.safetensors",
|
229 |
+
"gpt_neox.layers.25.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
230 |
+
"gpt_neox.layers.25.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"gpt_neox.layers.25.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
232 |
+
"gpt_neox.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"gpt_neox.layers.25.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
234 |
+
"gpt_neox.layers.25.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
235 |
+
"gpt_neox.layers.25.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
236 |
+
"gpt_neox.layers.25.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
237 |
+
"gpt_neox.layers.25.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
238 |
+
"gpt_neox.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
239 |
+
"gpt_neox.layers.26.attention.dense.bias": "model-00001-of-00002.safetensors",
|
240 |
+
"gpt_neox.layers.26.attention.dense.weight": "model-00001-of-00002.safetensors",
|
241 |
+
"gpt_neox.layers.26.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
242 |
+
"gpt_neox.layers.26.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"gpt_neox.layers.26.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
244 |
+
"gpt_neox.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"gpt_neox.layers.26.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
246 |
+
"gpt_neox.layers.26.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"gpt_neox.layers.26.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
248 |
+
"gpt_neox.layers.26.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"gpt_neox.layers.26.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
250 |
+
"gpt_neox.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"gpt_neox.layers.27.attention.dense.bias": "model-00001-of-00002.safetensors",
|
252 |
+
"gpt_neox.layers.27.attention.dense.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"gpt_neox.layers.27.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
254 |
+
"gpt_neox.layers.27.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"gpt_neox.layers.27.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
256 |
+
"gpt_neox.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"gpt_neox.layers.27.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
258 |
+
"gpt_neox.layers.27.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"gpt_neox.layers.27.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
260 |
+
"gpt_neox.layers.27.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"gpt_neox.layers.27.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
262 |
+
"gpt_neox.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"gpt_neox.layers.28.attention.dense.bias": "model-00001-of-00002.safetensors",
|
264 |
+
"gpt_neox.layers.28.attention.dense.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"gpt_neox.layers.28.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
266 |
+
"gpt_neox.layers.28.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"gpt_neox.layers.28.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
268 |
+
"gpt_neox.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"gpt_neox.layers.28.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
270 |
+
"gpt_neox.layers.28.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"gpt_neox.layers.28.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
272 |
+
"gpt_neox.layers.28.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"gpt_neox.layers.28.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
274 |
+
"gpt_neox.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"gpt_neox.layers.29.attention.dense.bias": "model-00001-of-00002.safetensors",
|
276 |
+
"gpt_neox.layers.29.attention.dense.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"gpt_neox.layers.29.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
278 |
+
"gpt_neox.layers.29.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"gpt_neox.layers.29.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
280 |
+
"gpt_neox.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"gpt_neox.layers.29.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
282 |
+
"gpt_neox.layers.29.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"gpt_neox.layers.29.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
284 |
+
"gpt_neox.layers.29.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"gpt_neox.layers.29.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
286 |
+
"gpt_neox.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"gpt_neox.layers.3.attention.dense.bias": "model-00001-of-00002.safetensors",
|
288 |
+
"gpt_neox.layers.3.attention.dense.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"gpt_neox.layers.3.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
290 |
+
"gpt_neox.layers.3.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"gpt_neox.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
292 |
+
"gpt_neox.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
294 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
296 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
297 |
+
"gpt_neox.layers.3.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
298 |
+
"gpt_neox.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
299 |
+
"gpt_neox.layers.30.attention.dense.bias": "model-00002-of-00002.safetensors",
|
300 |
+
"gpt_neox.layers.30.attention.dense.weight": "model-00002-of-00002.safetensors",
|
301 |
+
"gpt_neox.layers.30.attention.query_key_value.bias": "model-00002-of-00002.safetensors",
|
302 |
+
"gpt_neox.layers.30.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
303 |
+
"gpt_neox.layers.30.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
304 |
+
"gpt_neox.layers.30.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
305 |
+
"gpt_neox.layers.30.mlp.dense_4h_to_h.bias": "model-00002-of-00002.safetensors",
|
306 |
+
"gpt_neox.layers.30.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
307 |
+
"gpt_neox.layers.30.mlp.dense_h_to_4h.bias": "model-00002-of-00002.safetensors",
|
308 |
+
"gpt_neox.layers.30.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
309 |
+
"gpt_neox.layers.30.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
310 |
+
"gpt_neox.layers.30.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
311 |
+
"gpt_neox.layers.31.attention.dense.bias": "model-00002-of-00002.safetensors",
|
312 |
+
"gpt_neox.layers.31.attention.dense.weight": "model-00002-of-00002.safetensors",
|
313 |
+
"gpt_neox.layers.31.attention.query_key_value.bias": "model-00002-of-00002.safetensors",
|
314 |
+
"gpt_neox.layers.31.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
|
315 |
+
"gpt_neox.layers.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
316 |
+
"gpt_neox.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
317 |
+
"gpt_neox.layers.31.mlp.dense_4h_to_h.bias": "model-00002-of-00002.safetensors",
|
318 |
+
"gpt_neox.layers.31.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
|
319 |
+
"gpt_neox.layers.31.mlp.dense_h_to_4h.bias": "model-00002-of-00002.safetensors",
|
320 |
+
"gpt_neox.layers.31.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
|
321 |
+
"gpt_neox.layers.31.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
322 |
+
"gpt_neox.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
323 |
+
"gpt_neox.layers.4.attention.dense.bias": "model-00001-of-00002.safetensors",
|
324 |
+
"gpt_neox.layers.4.attention.dense.weight": "model-00001-of-00002.safetensors",
|
325 |
+
"gpt_neox.layers.4.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
326 |
+
"gpt_neox.layers.4.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
327 |
+
"gpt_neox.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
328 |
+
"gpt_neox.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
329 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
330 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
331 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
332 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
333 |
+
"gpt_neox.layers.4.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
334 |
+
"gpt_neox.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
335 |
+
"gpt_neox.layers.5.attention.dense.bias": "model-00001-of-00002.safetensors",
|
336 |
+
"gpt_neox.layers.5.attention.dense.weight": "model-00001-of-00002.safetensors",
|
337 |
+
"gpt_neox.layers.5.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
338 |
+
"gpt_neox.layers.5.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
339 |
+
"gpt_neox.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
340 |
+
"gpt_neox.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
341 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
342 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
343 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
344 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
345 |
+
"gpt_neox.layers.5.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
346 |
+
"gpt_neox.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
347 |
+
"gpt_neox.layers.6.attention.dense.bias": "model-00001-of-00002.safetensors",
|
348 |
+
"gpt_neox.layers.6.attention.dense.weight": "model-00001-of-00002.safetensors",
|
349 |
+
"gpt_neox.layers.6.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
350 |
+
"gpt_neox.layers.6.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
351 |
+
"gpt_neox.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
352 |
+
"gpt_neox.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
353 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
354 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
355 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
356 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
357 |
+
"gpt_neox.layers.6.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
358 |
+
"gpt_neox.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
359 |
+
"gpt_neox.layers.7.attention.dense.bias": "model-00001-of-00002.safetensors",
|
360 |
+
"gpt_neox.layers.7.attention.dense.weight": "model-00001-of-00002.safetensors",
|
361 |
+
"gpt_neox.layers.7.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
362 |
+
"gpt_neox.layers.7.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
363 |
+
"gpt_neox.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
364 |
+
"gpt_neox.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
365 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
366 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
367 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
368 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
369 |
+
"gpt_neox.layers.7.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
370 |
+
"gpt_neox.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
371 |
+
"gpt_neox.layers.8.attention.dense.bias": "model-00001-of-00002.safetensors",
|
372 |
+
"gpt_neox.layers.8.attention.dense.weight": "model-00001-of-00002.safetensors",
|
373 |
+
"gpt_neox.layers.8.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
374 |
+
"gpt_neox.layers.8.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
375 |
+
"gpt_neox.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
376 |
+
"gpt_neox.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
377 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
378 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
379 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
380 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
381 |
+
"gpt_neox.layers.8.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
382 |
+
"gpt_neox.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
383 |
+
"gpt_neox.layers.9.attention.dense.bias": "model-00001-of-00002.safetensors",
|
384 |
+
"gpt_neox.layers.9.attention.dense.weight": "model-00001-of-00002.safetensors",
|
385 |
+
"gpt_neox.layers.9.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
|
386 |
+
"gpt_neox.layers.9.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
|
387 |
+
"gpt_neox.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
388 |
+
"gpt_neox.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
389 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
|
390 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
|
391 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
|
392 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
|
393 |
+
"gpt_neox.layers.9.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
394 |
+
"gpt_neox.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors"
|
395 |
+
}
|
396 |
+
}
|
checkpoint-2400/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0566e93b83b74c99311859806a46cd4d937efd7086b7a022e5de527f8dfadeb9
|
3 |
+
size 14640
|
checkpoint-2400/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33abd1e9a7281c9ab9215f203bb1a32f1afed08f58c331e615fef002d43b478f
|
3 |
+
size 1064
|
checkpoint-2400/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|endoftext|>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-2400/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-2400/tokenizer_config.json
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<|endoftext|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<|padding|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"50254": {
|
23 |
+
"content": " ",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": true,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"50255": {
|
31 |
+
"content": " ",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"50256": {
|
39 |
+
"content": " ",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"50257": {
|
47 |
+
"content": " ",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"50258": {
|
55 |
+
"content": " ",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"50259": {
|
63 |
+
"content": " ",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"50260": {
|
71 |
+
"content": " ",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"50261": {
|
79 |
+
"content": " ",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"50262": {
|
87 |
+
"content": " ",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"50263": {
|
95 |
+
"content": " ",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"50264": {
|
103 |
+
"content": " ",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"50265": {
|
111 |
+
"content": " ",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"50266": {
|
119 |
+
"content": " ",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"50267": {
|
127 |
+
"content": " ",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"50268": {
|
135 |
+
"content": " ",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"50269": {
|
143 |
+
"content": " ",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"50270": {
|
151 |
+
"content": " ",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"50271": {
|
159 |
+
"content": " ",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"50272": {
|
167 |
+
"content": " ",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"50273": {
|
175 |
+
"content": " ",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"50274": {
|
183 |
+
"content": " ",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": true,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": false
|
189 |
+
},
|
190 |
+
"50275": {
|
191 |
+
"content": " ",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": true,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": false
|
197 |
+
},
|
198 |
+
"50276": {
|
199 |
+
"content": " ",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": true,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": false
|
205 |
+
}
|
206 |
+
},
|
207 |
+
"bos_token": "<|endoftext|>",
|
208 |
+
"clean_up_tokenization_spaces": true,
|
209 |
+
"eos_token": "<|endoftext|>",
|
210 |
+
"model_max_length": 1000000000000000019884624838656,
|
211 |
+
"pad_token": "<|endoftext|>",
|
212 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
213 |
+
"unk_token": "<|endoftext|>"
|
214 |
+
}
|
checkpoint-2400/trainer_state.json
ADDED
@@ -0,0 +1,1774 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 7.494145199063232,
|
5 |
+
"eval_steps": 400,
|
6 |
+
"global_step": 2400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.00312256049960968,
|
13 |
+
"grad_norm": 0.0,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 1.8678,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0312256049960968,
|
20 |
+
"grad_norm": 0.0,
|
21 |
+
"learning_rate": 0.0,
|
22 |
+
"loss": 1.7236,
|
23 |
+
"step": 10
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.0624512099921936,
|
27 |
+
"grad_norm": 37.27561569213867,
|
28 |
+
"learning_rate": 8e-08,
|
29 |
+
"loss": 1.805,
|
30 |
+
"step": 20
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0936768149882904,
|
34 |
+
"grad_norm": 41.067867279052734,
|
35 |
+
"learning_rate": 4.800000000000001e-07,
|
36 |
+
"loss": 1.6883,
|
37 |
+
"step": 30
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.1249024199843872,
|
41 |
+
"grad_norm": 43.672298431396484,
|
42 |
+
"learning_rate": 8.400000000000001e-07,
|
43 |
+
"loss": 1.6964,
|
44 |
+
"step": 40
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.156128024980484,
|
48 |
+
"grad_norm": 43.07832717895508,
|
49 |
+
"learning_rate": 1.2400000000000002e-06,
|
50 |
+
"loss": 1.6138,
|
51 |
+
"step": 50
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.1873536299765808,
|
55 |
+
"grad_norm": 37.47705841064453,
|
56 |
+
"learning_rate": 1.6400000000000002e-06,
|
57 |
+
"loss": 1.5515,
|
58 |
+
"step": 60
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.2185792349726776,
|
62 |
+
"grad_norm": 28.83339500427246,
|
63 |
+
"learning_rate": 2.04e-06,
|
64 |
+
"loss": 1.3408,
|
65 |
+
"step": 70
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.2498048399687744,
|
69 |
+
"grad_norm": 31.222503662109375,
|
70 |
+
"learning_rate": 2.4400000000000004e-06,
|
71 |
+
"loss": 1.2731,
|
72 |
+
"step": 80
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.2810304449648712,
|
76 |
+
"grad_norm": 23.76290512084961,
|
77 |
+
"learning_rate": 2.84e-06,
|
78 |
+
"loss": 1.2666,
|
79 |
+
"step": 90
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.312256049960968,
|
83 |
+
"grad_norm": 23.913143157958984,
|
84 |
+
"learning_rate": 3.2400000000000003e-06,
|
85 |
+
"loss": 1.1393,
|
86 |
+
"step": 100
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.3434816549570648,
|
90 |
+
"grad_norm": 24.92310905456543,
|
91 |
+
"learning_rate": 3.6400000000000003e-06,
|
92 |
+
"loss": 1.1529,
|
93 |
+
"step": 110
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.3747072599531616,
|
97 |
+
"grad_norm": 20.76234245300293,
|
98 |
+
"learning_rate": 4.04e-06,
|
99 |
+
"loss": 1.0776,
|
100 |
+
"step": 120
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.4059328649492584,
|
104 |
+
"grad_norm": 30.90992546081543,
|
105 |
+
"learning_rate": 4.440000000000001e-06,
|
106 |
+
"loss": 1.0028,
|
107 |
+
"step": 130
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.4371584699453552,
|
111 |
+
"grad_norm": 30.7198429107666,
|
112 |
+
"learning_rate": 4.84e-06,
|
113 |
+
"loss": 0.9807,
|
114 |
+
"step": 140
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.468384074941452,
|
118 |
+
"grad_norm": 22.76320457458496,
|
119 |
+
"learning_rate": 5.240000000000001e-06,
|
120 |
+
"loss": 0.992,
|
121 |
+
"step": 150
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.4996096799375488,
|
125 |
+
"grad_norm": 24.735822677612305,
|
126 |
+
"learning_rate": 5.64e-06,
|
127 |
+
"loss": 0.8421,
|
128 |
+
"step": 160
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.5308352849336456,
|
132 |
+
"grad_norm": 27.185937881469727,
|
133 |
+
"learning_rate": 6.040000000000001e-06,
|
134 |
+
"loss": 1.012,
|
135 |
+
"step": 170
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.5620608899297423,
|
139 |
+
"grad_norm": 16.42388916015625,
|
140 |
+
"learning_rate": 6.440000000000001e-06,
|
141 |
+
"loss": 0.7315,
|
142 |
+
"step": 180
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.5932864949258392,
|
146 |
+
"grad_norm": 25.17578887939453,
|
147 |
+
"learning_rate": 6.8400000000000014e-06,
|
148 |
+
"loss": 0.6995,
|
149 |
+
"step": 190
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.624512099921936,
|
153 |
+
"grad_norm": 19.550037384033203,
|
154 |
+
"learning_rate": 7.24e-06,
|
155 |
+
"loss": 0.8551,
|
156 |
+
"step": 200
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.6557377049180327,
|
160 |
+
"grad_norm": 22.346853256225586,
|
161 |
+
"learning_rate": 7.640000000000001e-06,
|
162 |
+
"loss": 0.726,
|
163 |
+
"step": 210
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.6869633099141296,
|
167 |
+
"grad_norm": 31.998685836791992,
|
168 |
+
"learning_rate": 8.040000000000001e-06,
|
169 |
+
"loss": 0.8553,
|
170 |
+
"step": 220
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.7181889149102264,
|
174 |
+
"grad_norm": 23.751340866088867,
|
175 |
+
"learning_rate": 8.44e-06,
|
176 |
+
"loss": 0.7651,
|
177 |
+
"step": 230
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.7494145199063232,
|
181 |
+
"grad_norm": 33.09165954589844,
|
182 |
+
"learning_rate": 8.8e-06,
|
183 |
+
"loss": 0.8395,
|
184 |
+
"step": 240
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.78064012490242,
|
188 |
+
"grad_norm": 35.236629486083984,
|
189 |
+
"learning_rate": 9.200000000000002e-06,
|
190 |
+
"loss": 0.7972,
|
191 |
+
"step": 250
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.8118657298985168,
|
195 |
+
"grad_norm": 32.98189926147461,
|
196 |
+
"learning_rate": 9.600000000000001e-06,
|
197 |
+
"loss": 0.7247,
|
198 |
+
"step": 260
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.8430913348946136,
|
202 |
+
"grad_norm": 26.376121520996094,
|
203 |
+
"learning_rate": 1e-05,
|
204 |
+
"loss": 0.7572,
|
205 |
+
"step": 270
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.8743169398907104,
|
209 |
+
"grad_norm": 40.748741149902344,
|
210 |
+
"learning_rate": 1e-05,
|
211 |
+
"loss": 0.6943,
|
212 |
+
"step": 280
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.9055425448868072,
|
216 |
+
"grad_norm": 55.08994674682617,
|
217 |
+
"learning_rate": 1e-05,
|
218 |
+
"loss": 0.8476,
|
219 |
+
"step": 290
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.936768149882904,
|
223 |
+
"grad_norm": 40.200077056884766,
|
224 |
+
"learning_rate": 1e-05,
|
225 |
+
"loss": 0.7114,
|
226 |
+
"step": 300
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.9679937548790007,
|
230 |
+
"grad_norm": 24.698932647705078,
|
231 |
+
"learning_rate": 1e-05,
|
232 |
+
"loss": 0.7889,
|
233 |
+
"step": 310
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.9992193598750976,
|
237 |
+
"grad_norm": 20.618940353393555,
|
238 |
+
"learning_rate": 1e-05,
|
239 |
+
"loss": 0.7606,
|
240 |
+
"step": 320
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 1.0304449648711944,
|
244 |
+
"grad_norm": 24.90777587890625,
|
245 |
+
"learning_rate": 1e-05,
|
246 |
+
"loss": 0.4925,
|
247 |
+
"step": 330
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 1.0616705698672912,
|
251 |
+
"grad_norm": 28.75925636291504,
|
252 |
+
"learning_rate": 1e-05,
|
253 |
+
"loss": 0.4349,
|
254 |
+
"step": 340
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.092896174863388,
|
258 |
+
"grad_norm": 306.2433166503906,
|
259 |
+
"learning_rate": 1e-05,
|
260 |
+
"loss": 0.4855,
|
261 |
+
"step": 350
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 1.1241217798594847,
|
265 |
+
"grad_norm": 30.801406860351562,
|
266 |
+
"learning_rate": 1e-05,
|
267 |
+
"loss": 0.4829,
|
268 |
+
"step": 360
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 1.1553473848555815,
|
272 |
+
"grad_norm": 20.874588012695312,
|
273 |
+
"learning_rate": 1e-05,
|
274 |
+
"loss": 0.4967,
|
275 |
+
"step": 370
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 1.1865729898516784,
|
279 |
+
"grad_norm": 15.966379165649414,
|
280 |
+
"learning_rate": 1e-05,
|
281 |
+
"loss": 0.4283,
|
282 |
+
"step": 380
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 1.2177985948477752,
|
286 |
+
"grad_norm": 82.65829467773438,
|
287 |
+
"learning_rate": 1e-05,
|
288 |
+
"loss": 0.4268,
|
289 |
+
"step": 390
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 1.249024199843872,
|
293 |
+
"grad_norm": 32.251461029052734,
|
294 |
+
"learning_rate": 1e-05,
|
295 |
+
"loss": 0.5603,
|
296 |
+
"step": 400
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 1.249024199843872,
|
300 |
+
"eval_accuracy": 0.7,
|
301 |
+
"eval_loss": 0.378662109375,
|
302 |
+
"eval_runtime": 0.8734,
|
303 |
+
"eval_samples_per_second": 11.449,
|
304 |
+
"eval_steps_per_second": 1.145,
|
305 |
+
"step": 400
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 1.2802498048399689,
|
309 |
+
"grad_norm": 16.248600006103516,
|
310 |
+
"learning_rate": 1e-05,
|
311 |
+
"loss": 0.4496,
|
312 |
+
"step": 410
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 1.3114754098360657,
|
316 |
+
"grad_norm": 26.644573211669922,
|
317 |
+
"learning_rate": 1e-05,
|
318 |
+
"loss": 0.45,
|
319 |
+
"step": 420
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 1.3427010148321623,
|
323 |
+
"grad_norm": 31.046363830566406,
|
324 |
+
"learning_rate": 1e-05,
|
325 |
+
"loss": 0.4094,
|
326 |
+
"step": 430
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 1.3739266198282591,
|
330 |
+
"grad_norm": 25.93197250366211,
|
331 |
+
"learning_rate": 1e-05,
|
332 |
+
"loss": 0.3649,
|
333 |
+
"step": 440
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 1.405152224824356,
|
337 |
+
"grad_norm": 19.997283935546875,
|
338 |
+
"learning_rate": 1e-05,
|
339 |
+
"loss": 0.5174,
|
340 |
+
"step": 450
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 1.4363778298204528,
|
344 |
+
"grad_norm": 20.04343032836914,
|
345 |
+
"learning_rate": 1e-05,
|
346 |
+
"loss": 0.4514,
|
347 |
+
"step": 460
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 1.4676034348165496,
|
351 |
+
"grad_norm": 18.52043914794922,
|
352 |
+
"learning_rate": 1e-05,
|
353 |
+
"loss": 0.3747,
|
354 |
+
"step": 470
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 1.4988290398126463,
|
358 |
+
"grad_norm": 74.7401123046875,
|
359 |
+
"learning_rate": 1e-05,
|
360 |
+
"loss": 0.4383,
|
361 |
+
"step": 480
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 1.530054644808743,
|
365 |
+
"grad_norm": 114.52285766601562,
|
366 |
+
"learning_rate": 1e-05,
|
367 |
+
"loss": 0.461,
|
368 |
+
"step": 490
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 1.56128024980484,
|
372 |
+
"grad_norm": 122.9369125366211,
|
373 |
+
"learning_rate": 1e-05,
|
374 |
+
"loss": 0.6252,
|
375 |
+
"step": 500
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 1.5925058548009368,
|
379 |
+
"grad_norm": 44.502681732177734,
|
380 |
+
"learning_rate": 1e-05,
|
381 |
+
"loss": 0.7419,
|
382 |
+
"step": 510
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 1.6237314597970336,
|
386 |
+
"grad_norm": 48.50262451171875,
|
387 |
+
"learning_rate": 1e-05,
|
388 |
+
"loss": 0.6756,
|
389 |
+
"step": 520
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 1.6549570647931304,
|
393 |
+
"grad_norm": 39.29521942138672,
|
394 |
+
"learning_rate": 1e-05,
|
395 |
+
"loss": 0.6941,
|
396 |
+
"step": 530
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 1.6861826697892273,
|
400 |
+
"grad_norm": 33.0960807800293,
|
401 |
+
"learning_rate": 1e-05,
|
402 |
+
"loss": 0.6813,
|
403 |
+
"step": 540
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 1.717408274785324,
|
407 |
+
"grad_norm": 25.355117797851562,
|
408 |
+
"learning_rate": 1e-05,
|
409 |
+
"loss": 0.7615,
|
410 |
+
"step": 550
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 1.748633879781421,
|
414 |
+
"grad_norm": 20.417200088500977,
|
415 |
+
"learning_rate": 1e-05,
|
416 |
+
"loss": 0.6087,
|
417 |
+
"step": 560
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 1.7798594847775175,
|
421 |
+
"grad_norm": 33.266746520996094,
|
422 |
+
"learning_rate": 1e-05,
|
423 |
+
"loss": 0.7996,
|
424 |
+
"step": 570
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 1.8110850897736144,
|
428 |
+
"grad_norm": 13.53630542755127,
|
429 |
+
"learning_rate": 1e-05,
|
430 |
+
"loss": 0.6292,
|
431 |
+
"step": 580
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 1.8423106947697112,
|
435 |
+
"grad_norm": 39.0125732421875,
|
436 |
+
"learning_rate": 1e-05,
|
437 |
+
"loss": 0.591,
|
438 |
+
"step": 590
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 1.8735362997658078,
|
442 |
+
"grad_norm": 24.019407272338867,
|
443 |
+
"learning_rate": 1e-05,
|
444 |
+
"loss": 0.6722,
|
445 |
+
"step": 600
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 1.9047619047619047,
|
449 |
+
"grad_norm": 27.3595027923584,
|
450 |
+
"learning_rate": 1e-05,
|
451 |
+
"loss": 0.5955,
|
452 |
+
"step": 610
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.9359875097580015,
|
456 |
+
"grad_norm": 22.498308181762695,
|
457 |
+
"learning_rate": 1e-05,
|
458 |
+
"loss": 0.5076,
|
459 |
+
"step": 620
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 1.9672131147540983,
|
463 |
+
"grad_norm": 18.389278411865234,
|
464 |
+
"learning_rate": 1e-05,
|
465 |
+
"loss": 0.6773,
|
466 |
+
"step": 630
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 1.9984387197501952,
|
470 |
+
"grad_norm": 17.433815002441406,
|
471 |
+
"learning_rate": 1e-05,
|
472 |
+
"loss": 0.5944,
|
473 |
+
"step": 640
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 2.029664324746292,
|
477 |
+
"grad_norm": 11.7727632522583,
|
478 |
+
"learning_rate": 1e-05,
|
479 |
+
"loss": 0.1184,
|
480 |
+
"step": 650
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 2.060889929742389,
|
484 |
+
"grad_norm": 44.985408782958984,
|
485 |
+
"learning_rate": 1e-05,
|
486 |
+
"loss": 0.4219,
|
487 |
+
"step": 660
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 2.0921155347384857,
|
491 |
+
"grad_norm": 27.04376220703125,
|
492 |
+
"learning_rate": 1e-05,
|
493 |
+
"loss": 0.1695,
|
494 |
+
"step": 670
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 2.1233411397345825,
|
498 |
+
"grad_norm": 29.073190689086914,
|
499 |
+
"learning_rate": 1e-05,
|
500 |
+
"loss": 0.2694,
|
501 |
+
"step": 680
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 2.1545667447306793,
|
505 |
+
"grad_norm": 30.895280838012695,
|
506 |
+
"learning_rate": 1e-05,
|
507 |
+
"loss": 0.2046,
|
508 |
+
"step": 690
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 2.185792349726776,
|
512 |
+
"grad_norm": 10.022652626037598,
|
513 |
+
"learning_rate": 1e-05,
|
514 |
+
"loss": 0.1136,
|
515 |
+
"step": 700
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 2.2170179547228726,
|
519 |
+
"grad_norm": 26.809078216552734,
|
520 |
+
"learning_rate": 1e-05,
|
521 |
+
"loss": 0.1925,
|
522 |
+
"step": 710
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 2.2482435597189694,
|
526 |
+
"grad_norm": 36.76298141479492,
|
527 |
+
"learning_rate": 1e-05,
|
528 |
+
"loss": 0.2269,
|
529 |
+
"step": 720
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 2.279469164715066,
|
533 |
+
"grad_norm": 15.884474754333496,
|
534 |
+
"learning_rate": 1e-05,
|
535 |
+
"loss": 0.2236,
|
536 |
+
"step": 730
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 2.310694769711163,
|
540 |
+
"grad_norm": 48.100120544433594,
|
541 |
+
"learning_rate": 1e-05,
|
542 |
+
"loss": 0.2063,
|
543 |
+
"step": 740
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 2.34192037470726,
|
547 |
+
"grad_norm": 7.69113302230835,
|
548 |
+
"learning_rate": 1e-05,
|
549 |
+
"loss": 0.1649,
|
550 |
+
"step": 750
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 2.3731459797033567,
|
554 |
+
"grad_norm": 37.846527099609375,
|
555 |
+
"learning_rate": 1e-05,
|
556 |
+
"loss": 0.1523,
|
557 |
+
"step": 760
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 2.4043715846994536,
|
561 |
+
"grad_norm": 17.19913101196289,
|
562 |
+
"learning_rate": 1e-05,
|
563 |
+
"loss": 0.2338,
|
564 |
+
"step": 770
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 2.4355971896955504,
|
568 |
+
"grad_norm": 42.62053298950195,
|
569 |
+
"learning_rate": 1e-05,
|
570 |
+
"loss": 0.4299,
|
571 |
+
"step": 780
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 2.4668227946916472,
|
575 |
+
"grad_norm": 14.81313705444336,
|
576 |
+
"learning_rate": 1e-05,
|
577 |
+
"loss": 0.2679,
|
578 |
+
"step": 790
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 2.498048399687744,
|
582 |
+
"grad_norm": 16.247289657592773,
|
583 |
+
"learning_rate": 1e-05,
|
584 |
+
"loss": 0.2645,
|
585 |
+
"step": 800
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 2.498048399687744,
|
589 |
+
"eval_accuracy": 0.7,
|
590 |
+
"eval_loss": 0.490234375,
|
591 |
+
"eval_runtime": 0.8679,
|
592 |
+
"eval_samples_per_second": 11.522,
|
593 |
+
"eval_steps_per_second": 1.152,
|
594 |
+
"step": 800
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 2.529274004683841,
|
598 |
+
"grad_norm": 26.519615173339844,
|
599 |
+
"learning_rate": 1e-05,
|
600 |
+
"loss": 0.2979,
|
601 |
+
"step": 810
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 2.5604996096799377,
|
605 |
+
"grad_norm": 35.26914596557617,
|
606 |
+
"learning_rate": 1e-05,
|
607 |
+
"loss": 0.2336,
|
608 |
+
"step": 820
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 2.5917252146760346,
|
612 |
+
"grad_norm": 21.243257522583008,
|
613 |
+
"learning_rate": 1e-05,
|
614 |
+
"loss": 0.2344,
|
615 |
+
"step": 830
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 2.6229508196721314,
|
619 |
+
"grad_norm": 59.89961624145508,
|
620 |
+
"learning_rate": 1e-05,
|
621 |
+
"loss": 0.2617,
|
622 |
+
"step": 840
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 2.654176424668228,
|
626 |
+
"grad_norm": 19.667827606201172,
|
627 |
+
"learning_rate": 1e-05,
|
628 |
+
"loss": 0.197,
|
629 |
+
"step": 850
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 2.6854020296643246,
|
633 |
+
"grad_norm": 27.412151336669922,
|
634 |
+
"learning_rate": 1e-05,
|
635 |
+
"loss": 0.1607,
|
636 |
+
"step": 860
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 2.7166276346604215,
|
640 |
+
"grad_norm": 10.426700592041016,
|
641 |
+
"learning_rate": 1e-05,
|
642 |
+
"loss": 0.2341,
|
643 |
+
"step": 870
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 2.7478532396565183,
|
647 |
+
"grad_norm": 25.850656509399414,
|
648 |
+
"learning_rate": 1e-05,
|
649 |
+
"loss": 0.1947,
|
650 |
+
"step": 880
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 2.779078844652615,
|
654 |
+
"grad_norm": 33.998863220214844,
|
655 |
+
"learning_rate": 1e-05,
|
656 |
+
"loss": 0.2047,
|
657 |
+
"step": 890
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 2.810304449648712,
|
661 |
+
"grad_norm": 17.702449798583984,
|
662 |
+
"learning_rate": 1e-05,
|
663 |
+
"loss": 0.238,
|
664 |
+
"step": 900
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 2.841530054644809,
|
668 |
+
"grad_norm": 3.9858572483062744,
|
669 |
+
"learning_rate": 1e-05,
|
670 |
+
"loss": 0.2327,
|
671 |
+
"step": 910
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 2.8727556596409056,
|
675 |
+
"grad_norm": 35.145668029785156,
|
676 |
+
"learning_rate": 1e-05,
|
677 |
+
"loss": 0.1995,
|
678 |
+
"step": 920
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 2.9039812646370025,
|
682 |
+
"grad_norm": 46.61024856567383,
|
683 |
+
"learning_rate": 1e-05,
|
684 |
+
"loss": 0.1658,
|
685 |
+
"step": 930
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 2.9352068696330993,
|
689 |
+
"grad_norm": 23.774057388305664,
|
690 |
+
"learning_rate": 1e-05,
|
691 |
+
"loss": 0.2819,
|
692 |
+
"step": 940
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 2.9664324746291957,
|
696 |
+
"grad_norm": 15.349525451660156,
|
697 |
+
"learning_rate": 1e-05,
|
698 |
+
"loss": 0.1376,
|
699 |
+
"step": 950
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 2.9976580796252925,
|
703 |
+
"grad_norm": 13.426594734191895,
|
704 |
+
"learning_rate": 1e-05,
|
705 |
+
"loss": 0.2882,
|
706 |
+
"step": 960
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 3.0288836846213893,
|
710 |
+
"grad_norm": 6.281402587890625,
|
711 |
+
"learning_rate": 1e-05,
|
712 |
+
"loss": 0.0894,
|
713 |
+
"step": 970
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 3.060109289617486,
|
717 |
+
"grad_norm": 2.655089855194092,
|
718 |
+
"learning_rate": 1e-05,
|
719 |
+
"loss": 0.0745,
|
720 |
+
"step": 980
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 3.091334894613583,
|
724 |
+
"grad_norm": 3.948760986328125,
|
725 |
+
"learning_rate": 1e-05,
|
726 |
+
"loss": 0.07,
|
727 |
+
"step": 990
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 3.12256049960968,
|
731 |
+
"grad_norm": 20.85759735107422,
|
732 |
+
"learning_rate": 1e-05,
|
733 |
+
"loss": 0.0706,
|
734 |
+
"step": 1000
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 3.1537861046057767,
|
738 |
+
"grad_norm": 17.535884857177734,
|
739 |
+
"learning_rate": 1e-05,
|
740 |
+
"loss": 0.2045,
|
741 |
+
"step": 1010
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 3.1850117096018735,
|
745 |
+
"grad_norm": 21.014545440673828,
|
746 |
+
"learning_rate": 1e-05,
|
747 |
+
"loss": 0.1267,
|
748 |
+
"step": 1020
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 3.2162373145979704,
|
752 |
+
"grad_norm": 6.366164207458496,
|
753 |
+
"learning_rate": 1e-05,
|
754 |
+
"loss": 0.1616,
|
755 |
+
"step": 1030
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 3.247462919594067,
|
759 |
+
"grad_norm": 20.15192222595215,
|
760 |
+
"learning_rate": 1e-05,
|
761 |
+
"loss": 0.0979,
|
762 |
+
"step": 1040
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 3.278688524590164,
|
766 |
+
"grad_norm": 0.4769607186317444,
|
767 |
+
"learning_rate": 1e-05,
|
768 |
+
"loss": 0.1403,
|
769 |
+
"step": 1050
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 3.309914129586261,
|
773 |
+
"grad_norm": 9.628069877624512,
|
774 |
+
"learning_rate": 1e-05,
|
775 |
+
"loss": 0.0501,
|
776 |
+
"step": 1060
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 3.3411397345823577,
|
780 |
+
"grad_norm": 52.10974884033203,
|
781 |
+
"learning_rate": 1e-05,
|
782 |
+
"loss": 0.1405,
|
783 |
+
"step": 1070
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 3.3723653395784545,
|
787 |
+
"grad_norm": 23.110986709594727,
|
788 |
+
"learning_rate": 1e-05,
|
789 |
+
"loss": 0.1177,
|
790 |
+
"step": 1080
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 3.4035909445745514,
|
794 |
+
"grad_norm": 19.135101318359375,
|
795 |
+
"learning_rate": 1e-05,
|
796 |
+
"loss": 0.1152,
|
797 |
+
"step": 1090
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 3.4348165495706477,
|
801 |
+
"grad_norm": 10.451769828796387,
|
802 |
+
"learning_rate": 1e-05,
|
803 |
+
"loss": 0.1005,
|
804 |
+
"step": 1100
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 3.4660421545667446,
|
808 |
+
"grad_norm": 15.533573150634766,
|
809 |
+
"learning_rate": 1e-05,
|
810 |
+
"loss": 0.0585,
|
811 |
+
"step": 1110
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 3.4972677595628414,
|
815 |
+
"grad_norm": 8.309584617614746,
|
816 |
+
"learning_rate": 1e-05,
|
817 |
+
"loss": 0.1311,
|
818 |
+
"step": 1120
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 3.5284933645589383,
|
822 |
+
"grad_norm": 3.8508894443511963,
|
823 |
+
"learning_rate": 1e-05,
|
824 |
+
"loss": 0.0971,
|
825 |
+
"step": 1130
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 3.559718969555035,
|
829 |
+
"grad_norm": 16.79774284362793,
|
830 |
+
"learning_rate": 1e-05,
|
831 |
+
"loss": 0.1476,
|
832 |
+
"step": 1140
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 3.590944574551132,
|
836 |
+
"grad_norm": 1.4701294898986816,
|
837 |
+
"learning_rate": 1e-05,
|
838 |
+
"loss": 0.1692,
|
839 |
+
"step": 1150
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 3.6221701795472288,
|
843 |
+
"grad_norm": 13.413945198059082,
|
844 |
+
"learning_rate": 1e-05,
|
845 |
+
"loss": 0.1472,
|
846 |
+
"step": 1160
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"epoch": 3.6533957845433256,
|
850 |
+
"grad_norm": 27.413959503173828,
|
851 |
+
"learning_rate": 1e-05,
|
852 |
+
"loss": 0.1762,
|
853 |
+
"step": 1170
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 3.6846213895394224,
|
857 |
+
"grad_norm": 32.048553466796875,
|
858 |
+
"learning_rate": 1e-05,
|
859 |
+
"loss": 0.1562,
|
860 |
+
"step": 1180
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 3.7158469945355193,
|
864 |
+
"grad_norm": 31.58294677734375,
|
865 |
+
"learning_rate": 1e-05,
|
866 |
+
"loss": 0.1347,
|
867 |
+
"step": 1190
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 3.747072599531616,
|
871 |
+
"grad_norm": 17.824254989624023,
|
872 |
+
"learning_rate": 1e-05,
|
873 |
+
"loss": 0.1158,
|
874 |
+
"step": 1200
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 3.747072599531616,
|
878 |
+
"eval_accuracy": 0.6,
|
879 |
+
"eval_loss": 1.248046875,
|
880 |
+
"eval_runtime": 0.8648,
|
881 |
+
"eval_samples_per_second": 11.563,
|
882 |
+
"eval_steps_per_second": 1.156,
|
883 |
+
"step": 1200
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 3.7782982045277125,
|
887 |
+
"grad_norm": 46.47492599487305,
|
888 |
+
"learning_rate": 1e-05,
|
889 |
+
"loss": 0.1508,
|
890 |
+
"step": 1210
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 3.8095238095238093,
|
894 |
+
"grad_norm": 13.830499649047852,
|
895 |
+
"learning_rate": 1e-05,
|
896 |
+
"loss": 0.0936,
|
897 |
+
"step": 1220
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 3.840749414519906,
|
901 |
+
"grad_norm": 19.533958435058594,
|
902 |
+
"learning_rate": 1e-05,
|
903 |
+
"loss": 0.063,
|
904 |
+
"step": 1230
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 3.871975019516003,
|
908 |
+
"grad_norm": 43.4871940612793,
|
909 |
+
"learning_rate": 1e-05,
|
910 |
+
"loss": 0.1794,
|
911 |
+
"step": 1240
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 3.9032006245121,
|
915 |
+
"grad_norm": 17.626535415649414,
|
916 |
+
"learning_rate": 1e-05,
|
917 |
+
"loss": 0.1324,
|
918 |
+
"step": 1250
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 3.9344262295081966,
|
922 |
+
"grad_norm": 18.589401245117188,
|
923 |
+
"learning_rate": 1e-05,
|
924 |
+
"loss": 0.1517,
|
925 |
+
"step": 1260
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 3.9656518345042935,
|
929 |
+
"grad_norm": 8.064416885375977,
|
930 |
+
"learning_rate": 1e-05,
|
931 |
+
"loss": 0.108,
|
932 |
+
"step": 1270
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 3.9968774395003903,
|
936 |
+
"grad_norm": 3.094780206680298,
|
937 |
+
"learning_rate": 1e-05,
|
938 |
+
"loss": 0.1716,
|
939 |
+
"step": 1280
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 4.028103044496487,
|
943 |
+
"grad_norm": 9.602354049682617,
|
944 |
+
"learning_rate": 1e-05,
|
945 |
+
"loss": 0.0586,
|
946 |
+
"step": 1290
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 4.059328649492584,
|
950 |
+
"grad_norm": 17.06719207763672,
|
951 |
+
"learning_rate": 1e-05,
|
952 |
+
"loss": 0.0568,
|
953 |
+
"step": 1300
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 4.090554254488681,
|
957 |
+
"grad_norm": 23.80466079711914,
|
958 |
+
"learning_rate": 1e-05,
|
959 |
+
"loss": 0.0135,
|
960 |
+
"step": 1310
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 4.121779859484778,
|
964 |
+
"grad_norm": 1.7121708393096924,
|
965 |
+
"learning_rate": 1e-05,
|
966 |
+
"loss": 0.0382,
|
967 |
+
"step": 1320
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 4.1530054644808745,
|
971 |
+
"grad_norm": 0.5317578315734863,
|
972 |
+
"learning_rate": 1e-05,
|
973 |
+
"loss": 0.086,
|
974 |
+
"step": 1330
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 4.184231069476971,
|
978 |
+
"grad_norm": 46.14189147949219,
|
979 |
+
"learning_rate": 1e-05,
|
980 |
+
"loss": 0.2723,
|
981 |
+
"step": 1340
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 4.215456674473068,
|
985 |
+
"grad_norm": 14.067253112792969,
|
986 |
+
"learning_rate": 1e-05,
|
987 |
+
"loss": 0.1464,
|
988 |
+
"step": 1350
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"epoch": 4.246682279469165,
|
992 |
+
"grad_norm": 5.362925052642822,
|
993 |
+
"learning_rate": 1e-05,
|
994 |
+
"loss": 0.0283,
|
995 |
+
"step": 1360
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 4.277907884465262,
|
999 |
+
"grad_norm": 6.1237874031066895,
|
1000 |
+
"learning_rate": 1e-05,
|
1001 |
+
"loss": 0.0601,
|
1002 |
+
"step": 1370
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 4.309133489461359,
|
1006 |
+
"grad_norm": 1.5201495885849,
|
1007 |
+
"learning_rate": 1e-05,
|
1008 |
+
"loss": 0.0139,
|
1009 |
+
"step": 1380
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 4.3403590944574555,
|
1013 |
+
"grad_norm": 12.532272338867188,
|
1014 |
+
"learning_rate": 1e-05,
|
1015 |
+
"loss": 0.0499,
|
1016 |
+
"step": 1390
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 4.371584699453552,
|
1020 |
+
"grad_norm": 6.465614318847656,
|
1021 |
+
"learning_rate": 1e-05,
|
1022 |
+
"loss": 0.1156,
|
1023 |
+
"step": 1400
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 4.402810304449648,
|
1027 |
+
"grad_norm": 32.81221389770508,
|
1028 |
+
"learning_rate": 1e-05,
|
1029 |
+
"loss": 0.0678,
|
1030 |
+
"step": 1410
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"epoch": 4.434035909445745,
|
1034 |
+
"grad_norm": 0.24042364954948425,
|
1035 |
+
"learning_rate": 1e-05,
|
1036 |
+
"loss": 0.1699,
|
1037 |
+
"step": 1420
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"epoch": 4.465261514441842,
|
1041 |
+
"grad_norm": 50.17581558227539,
|
1042 |
+
"learning_rate": 1e-05,
|
1043 |
+
"loss": 0.09,
|
1044 |
+
"step": 1430
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 4.496487119437939,
|
1048 |
+
"grad_norm": 3.710916519165039,
|
1049 |
+
"learning_rate": 1e-05,
|
1050 |
+
"loss": 0.1545,
|
1051 |
+
"step": 1440
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 4.527712724434036,
|
1055 |
+
"grad_norm": 7.061243534088135,
|
1056 |
+
"learning_rate": 1e-05,
|
1057 |
+
"loss": 0.2035,
|
1058 |
+
"step": 1450
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 4.558938329430132,
|
1062 |
+
"grad_norm": 13.808802604675293,
|
1063 |
+
"learning_rate": 1e-05,
|
1064 |
+
"loss": 0.0959,
|
1065 |
+
"step": 1460
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 4.590163934426229,
|
1069 |
+
"grad_norm": 7.443483352661133,
|
1070 |
+
"learning_rate": 1e-05,
|
1071 |
+
"loss": 0.0549,
|
1072 |
+
"step": 1470
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 4.621389539422326,
|
1076 |
+
"grad_norm": 1.2829999923706055,
|
1077 |
+
"learning_rate": 1e-05,
|
1078 |
+
"loss": 0.1526,
|
1079 |
+
"step": 1480
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"epoch": 4.652615144418423,
|
1083 |
+
"grad_norm": 26.241554260253906,
|
1084 |
+
"learning_rate": 1e-05,
|
1085 |
+
"loss": 0.0783,
|
1086 |
+
"step": 1490
|
1087 |
+
},
|
1088 |
+
{
|
1089 |
+
"epoch": 4.68384074941452,
|
1090 |
+
"grad_norm": 43.98433303833008,
|
1091 |
+
"learning_rate": 1e-05,
|
1092 |
+
"loss": 0.0907,
|
1093 |
+
"step": 1500
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"epoch": 4.715066354410617,
|
1097 |
+
"grad_norm": 1.828418254852295,
|
1098 |
+
"learning_rate": 1e-05,
|
1099 |
+
"loss": 0.1057,
|
1100 |
+
"step": 1510
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 4.7462919594067134,
|
1104 |
+
"grad_norm": 19.284440994262695,
|
1105 |
+
"learning_rate": 1e-05,
|
1106 |
+
"loss": 0.0701,
|
1107 |
+
"step": 1520
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 4.77751756440281,
|
1111 |
+
"grad_norm": 18.53413963317871,
|
1112 |
+
"learning_rate": 1e-05,
|
1113 |
+
"loss": 0.1294,
|
1114 |
+
"step": 1530
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 4.808743169398907,
|
1118 |
+
"grad_norm": 2.0131237506866455,
|
1119 |
+
"learning_rate": 1e-05,
|
1120 |
+
"loss": 0.1589,
|
1121 |
+
"step": 1540
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 4.839968774395004,
|
1125 |
+
"grad_norm": 7.335690021514893,
|
1126 |
+
"learning_rate": 1e-05,
|
1127 |
+
"loss": 0.1426,
|
1128 |
+
"step": 1550
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 4.871194379391101,
|
1132 |
+
"grad_norm": 28.594770431518555,
|
1133 |
+
"learning_rate": 1e-05,
|
1134 |
+
"loss": 0.113,
|
1135 |
+
"step": 1560
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 4.902419984387198,
|
1139 |
+
"grad_norm": 4.218417644500732,
|
1140 |
+
"learning_rate": 1e-05,
|
1141 |
+
"loss": 0.1795,
|
1142 |
+
"step": 1570
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 4.9336455893832944,
|
1146 |
+
"grad_norm": 37.12601089477539,
|
1147 |
+
"learning_rate": 1e-05,
|
1148 |
+
"loss": 0.1044,
|
1149 |
+
"step": 1580
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 4.964871194379391,
|
1153 |
+
"grad_norm": 28.900989532470703,
|
1154 |
+
"learning_rate": 1e-05,
|
1155 |
+
"loss": 0.1998,
|
1156 |
+
"step": 1590
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 4.996096799375488,
|
1160 |
+
"grad_norm": 15.175968170166016,
|
1161 |
+
"learning_rate": 1e-05,
|
1162 |
+
"loss": 0.0844,
|
1163 |
+
"step": 1600
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 4.996096799375488,
|
1167 |
+
"eval_accuracy": 0.8,
|
1168 |
+
"eval_loss": 1.69921875,
|
1169 |
+
"eval_runtime": 0.8704,
|
1170 |
+
"eval_samples_per_second": 11.49,
|
1171 |
+
"eval_steps_per_second": 1.149,
|
1172 |
+
"step": 1600
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 5.027322404371585,
|
1176 |
+
"grad_norm": 96.47978973388672,
|
1177 |
+
"learning_rate": 1e-05,
|
1178 |
+
"loss": 0.1599,
|
1179 |
+
"step": 1610
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 5.058548009367682,
|
1183 |
+
"grad_norm": 5.848822116851807,
|
1184 |
+
"learning_rate": 1e-05,
|
1185 |
+
"loss": 0.0671,
|
1186 |
+
"step": 1620
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 5.089773614363779,
|
1190 |
+
"grad_norm": 8.831692695617676,
|
1191 |
+
"learning_rate": 1e-05,
|
1192 |
+
"loss": 0.047,
|
1193 |
+
"step": 1630
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 5.1209992193598755,
|
1197 |
+
"grad_norm": 0.2928885221481323,
|
1198 |
+
"learning_rate": 1e-05,
|
1199 |
+
"loss": 0.0895,
|
1200 |
+
"step": 1640
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 5.152224824355972,
|
1204 |
+
"grad_norm": 4.588135242462158,
|
1205 |
+
"learning_rate": 1e-05,
|
1206 |
+
"loss": 0.0109,
|
1207 |
+
"step": 1650
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 5.183450429352069,
|
1211 |
+
"grad_norm": 0.0034015802666544914,
|
1212 |
+
"learning_rate": 1e-05,
|
1213 |
+
"loss": 0.1328,
|
1214 |
+
"step": 1660
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 5.214676034348165,
|
1218 |
+
"grad_norm": 2.1403472423553467,
|
1219 |
+
"learning_rate": 1e-05,
|
1220 |
+
"loss": 0.1678,
|
1221 |
+
"step": 1670
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 5.245901639344262,
|
1225 |
+
"grad_norm": 38.722293853759766,
|
1226 |
+
"learning_rate": 1e-05,
|
1227 |
+
"loss": 0.0738,
|
1228 |
+
"step": 1680
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 5.277127244340359,
|
1232 |
+
"grad_norm": 24.931602478027344,
|
1233 |
+
"learning_rate": 1e-05,
|
1234 |
+
"loss": 0.0893,
|
1235 |
+
"step": 1690
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 5.308352849336456,
|
1239 |
+
"grad_norm": 8.807583808898926,
|
1240 |
+
"learning_rate": 1e-05,
|
1241 |
+
"loss": 0.0387,
|
1242 |
+
"step": 1700
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 5.339578454332552,
|
1246 |
+
"grad_norm": 56.61589431762695,
|
1247 |
+
"learning_rate": 1e-05,
|
1248 |
+
"loss": 0.1091,
|
1249 |
+
"step": 1710
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 5.370804059328649,
|
1253 |
+
"grad_norm": 3.9017961025238037,
|
1254 |
+
"learning_rate": 1e-05,
|
1255 |
+
"loss": 0.1022,
|
1256 |
+
"step": 1720
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 5.402029664324746,
|
1260 |
+
"grad_norm": 13.145605087280273,
|
1261 |
+
"learning_rate": 1e-05,
|
1262 |
+
"loss": 0.0593,
|
1263 |
+
"step": 1730
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 5.433255269320843,
|
1267 |
+
"grad_norm": 2.734715223312378,
|
1268 |
+
"learning_rate": 1e-05,
|
1269 |
+
"loss": 0.0412,
|
1270 |
+
"step": 1740
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 5.46448087431694,
|
1274 |
+
"grad_norm": 11.634307861328125,
|
1275 |
+
"learning_rate": 1e-05,
|
1276 |
+
"loss": 0.0745,
|
1277 |
+
"step": 1750
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 5.495706479313037,
|
1281 |
+
"grad_norm": 32.81011962890625,
|
1282 |
+
"learning_rate": 1e-05,
|
1283 |
+
"loss": 0.0778,
|
1284 |
+
"step": 1760
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 5.526932084309133,
|
1288 |
+
"grad_norm": 4.1930975914001465,
|
1289 |
+
"learning_rate": 1e-05,
|
1290 |
+
"loss": 0.1031,
|
1291 |
+
"step": 1770
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 5.55815768930523,
|
1295 |
+
"grad_norm": 1.3936034440994263,
|
1296 |
+
"learning_rate": 1e-05,
|
1297 |
+
"loss": 0.241,
|
1298 |
+
"step": 1780
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 5.589383294301327,
|
1302 |
+
"grad_norm": 31.164995193481445,
|
1303 |
+
"learning_rate": 1e-05,
|
1304 |
+
"loss": 0.0586,
|
1305 |
+
"step": 1790
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 5.620608899297424,
|
1309 |
+
"grad_norm": 2.2932653427124023,
|
1310 |
+
"learning_rate": 1e-05,
|
1311 |
+
"loss": 0.0132,
|
1312 |
+
"step": 1800
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 5.651834504293521,
|
1316 |
+
"grad_norm": 0.4385182857513428,
|
1317 |
+
"learning_rate": 1e-05,
|
1318 |
+
"loss": 0.1186,
|
1319 |
+
"step": 1810
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 5.683060109289618,
|
1323 |
+
"grad_norm": 25.183168411254883,
|
1324 |
+
"learning_rate": 1e-05,
|
1325 |
+
"loss": 0.0207,
|
1326 |
+
"step": 1820
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 5.714285714285714,
|
1330 |
+
"grad_norm": 8.401402473449707,
|
1331 |
+
"learning_rate": 1e-05,
|
1332 |
+
"loss": 0.0865,
|
1333 |
+
"step": 1830
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 5.745511319281811,
|
1337 |
+
"grad_norm": 6.048158168792725,
|
1338 |
+
"learning_rate": 1e-05,
|
1339 |
+
"loss": 0.1033,
|
1340 |
+
"step": 1840
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 5.776736924277908,
|
1344 |
+
"grad_norm": 10.991080284118652,
|
1345 |
+
"learning_rate": 1e-05,
|
1346 |
+
"loss": 0.1009,
|
1347 |
+
"step": 1850
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 5.807962529274005,
|
1351 |
+
"grad_norm": 5.008920669555664,
|
1352 |
+
"learning_rate": 1e-05,
|
1353 |
+
"loss": 0.1051,
|
1354 |
+
"step": 1860
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 5.839188134270102,
|
1358 |
+
"grad_norm": 59.1823616027832,
|
1359 |
+
"learning_rate": 1e-05,
|
1360 |
+
"loss": 0.1015,
|
1361 |
+
"step": 1870
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 5.870413739266199,
|
1365 |
+
"grad_norm": 31.044307708740234,
|
1366 |
+
"learning_rate": 1e-05,
|
1367 |
+
"loss": 0.0661,
|
1368 |
+
"step": 1880
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 5.901639344262295,
|
1372 |
+
"grad_norm": 53.48557662963867,
|
1373 |
+
"learning_rate": 1e-05,
|
1374 |
+
"loss": 0.0645,
|
1375 |
+
"step": 1890
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 5.932864949258392,
|
1379 |
+
"grad_norm": 85.64656066894531,
|
1380 |
+
"learning_rate": 1e-05,
|
1381 |
+
"loss": 0.0618,
|
1382 |
+
"step": 1900
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 5.964090554254488,
|
1386 |
+
"grad_norm": 55.22670364379883,
|
1387 |
+
"learning_rate": 1e-05,
|
1388 |
+
"loss": 0.1957,
|
1389 |
+
"step": 1910
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 5.995316159250585,
|
1393 |
+
"grad_norm": 20.682653427124023,
|
1394 |
+
"learning_rate": 1e-05,
|
1395 |
+
"loss": 0.0895,
|
1396 |
+
"step": 1920
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 6.026541764246682,
|
1400 |
+
"grad_norm": 20.45547103881836,
|
1401 |
+
"learning_rate": 1e-05,
|
1402 |
+
"loss": 0.0349,
|
1403 |
+
"step": 1930
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 6.057767369242779,
|
1407 |
+
"grad_norm": 0.7434096336364746,
|
1408 |
+
"learning_rate": 1e-05,
|
1409 |
+
"loss": 0.0839,
|
1410 |
+
"step": 1940
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 6.0889929742388755,
|
1414 |
+
"grad_norm": 3.747971534729004,
|
1415 |
+
"learning_rate": 1e-05,
|
1416 |
+
"loss": 0.0582,
|
1417 |
+
"step": 1950
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 6.120218579234972,
|
1421 |
+
"grad_norm": 12.133618354797363,
|
1422 |
+
"learning_rate": 1e-05,
|
1423 |
+
"loss": 0.1125,
|
1424 |
+
"step": 1960
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 6.151444184231069,
|
1428 |
+
"grad_norm": 0.936773955821991,
|
1429 |
+
"learning_rate": 1e-05,
|
1430 |
+
"loss": 0.0583,
|
1431 |
+
"step": 1970
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 6.182669789227166,
|
1435 |
+
"grad_norm": 50.38084411621094,
|
1436 |
+
"learning_rate": 1e-05,
|
1437 |
+
"loss": 0.0407,
|
1438 |
+
"step": 1980
|
1439 |
+
},
|
1440 |
+
{
|
1441 |
+
"epoch": 6.213895394223263,
|
1442 |
+
"grad_norm": 26.78063201904297,
|
1443 |
+
"learning_rate": 1e-05,
|
1444 |
+
"loss": 0.0461,
|
1445 |
+
"step": 1990
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 6.24512099921936,
|
1449 |
+
"grad_norm": 0.004929454065859318,
|
1450 |
+
"learning_rate": 1e-05,
|
1451 |
+
"loss": 0.0454,
|
1452 |
+
"step": 2000
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 6.24512099921936,
|
1456 |
+
"eval_accuracy": 0.8,
|
1457 |
+
"eval_loss": 0.7734375,
|
1458 |
+
"eval_runtime": 0.8692,
|
1459 |
+
"eval_samples_per_second": 11.505,
|
1460 |
+
"eval_steps_per_second": 1.151,
|
1461 |
+
"step": 2000
|
1462 |
+
},
|
1463 |
+
{
|
1464 |
+
"epoch": 6.2763466042154565,
|
1465 |
+
"grad_norm": 0.012857209891080856,
|
1466 |
+
"learning_rate": 1e-05,
|
1467 |
+
"loss": 0.0506,
|
1468 |
+
"step": 2010
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"epoch": 6.307572209211553,
|
1472 |
+
"grad_norm": 0.12446296960115433,
|
1473 |
+
"learning_rate": 1e-05,
|
1474 |
+
"loss": 0.05,
|
1475 |
+
"step": 2020
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 6.33879781420765,
|
1479 |
+
"grad_norm": 0.12134945392608643,
|
1480 |
+
"learning_rate": 1e-05,
|
1481 |
+
"loss": 0.101,
|
1482 |
+
"step": 2030
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 6.370023419203747,
|
1486 |
+
"grad_norm": 10.001453399658203,
|
1487 |
+
"learning_rate": 1e-05,
|
1488 |
+
"loss": 0.0425,
|
1489 |
+
"step": 2040
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"epoch": 6.401249024199844,
|
1493 |
+
"grad_norm": 0.5767087340354919,
|
1494 |
+
"learning_rate": 1e-05,
|
1495 |
+
"loss": 0.0806,
|
1496 |
+
"step": 2050
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 6.432474629195941,
|
1500 |
+
"grad_norm": 0.0031043330673128366,
|
1501 |
+
"learning_rate": 1e-05,
|
1502 |
+
"loss": 0.0399,
|
1503 |
+
"step": 2060
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 6.4637002341920375,
|
1507 |
+
"grad_norm": 12.768810272216797,
|
1508 |
+
"learning_rate": 1e-05,
|
1509 |
+
"loss": 0.0352,
|
1510 |
+
"step": 2070
|
1511 |
+
},
|
1512 |
+
{
|
1513 |
+
"epoch": 6.494925839188134,
|
1514 |
+
"grad_norm": 26.4639835357666,
|
1515 |
+
"learning_rate": 1e-05,
|
1516 |
+
"loss": 0.0731,
|
1517 |
+
"step": 2080
|
1518 |
+
},
|
1519 |
+
{
|
1520 |
+
"epoch": 6.526151444184231,
|
1521 |
+
"grad_norm": 19.031003952026367,
|
1522 |
+
"learning_rate": 1e-05,
|
1523 |
+
"loss": 0.0712,
|
1524 |
+
"step": 2090
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 6.557377049180328,
|
1528 |
+
"grad_norm": 0.18513961136341095,
|
1529 |
+
"learning_rate": 1e-05,
|
1530 |
+
"loss": 0.076,
|
1531 |
+
"step": 2100
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"epoch": 6.588602654176425,
|
1535 |
+
"grad_norm": 0.551861047744751,
|
1536 |
+
"learning_rate": 1e-05,
|
1537 |
+
"loss": 0.0737,
|
1538 |
+
"step": 2110
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 6.619828259172522,
|
1542 |
+
"grad_norm": 2.401113510131836,
|
1543 |
+
"learning_rate": 1e-05,
|
1544 |
+
"loss": 0.0674,
|
1545 |
+
"step": 2120
|
1546 |
+
},
|
1547 |
+
{
|
1548 |
+
"epoch": 6.6510538641686185,
|
1549 |
+
"grad_norm": 14.345379829406738,
|
1550 |
+
"learning_rate": 1e-05,
|
1551 |
+
"loss": 0.0446,
|
1552 |
+
"step": 2130
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 6.682279469164715,
|
1556 |
+
"grad_norm": 3.8702871799468994,
|
1557 |
+
"learning_rate": 1e-05,
|
1558 |
+
"loss": 0.0041,
|
1559 |
+
"step": 2140
|
1560 |
+
},
|
1561 |
+
{
|
1562 |
+
"epoch": 6.713505074160812,
|
1563 |
+
"grad_norm": 73.34154510498047,
|
1564 |
+
"learning_rate": 1e-05,
|
1565 |
+
"loss": 0.1014,
|
1566 |
+
"step": 2150
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 6.744730679156909,
|
1570 |
+
"grad_norm": 12.140496253967285,
|
1571 |
+
"learning_rate": 1e-05,
|
1572 |
+
"loss": 0.1052,
|
1573 |
+
"step": 2160
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 6.775956284153006,
|
1577 |
+
"grad_norm": 0.11863163858652115,
|
1578 |
+
"learning_rate": 1e-05,
|
1579 |
+
"loss": 0.0121,
|
1580 |
+
"step": 2170
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 6.807181889149103,
|
1584 |
+
"grad_norm": 15.587754249572754,
|
1585 |
+
"learning_rate": 1e-05,
|
1586 |
+
"loss": 0.0602,
|
1587 |
+
"step": 2180
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"epoch": 6.8384074941451995,
|
1591 |
+
"grad_norm": 49.31621170043945,
|
1592 |
+
"learning_rate": 1e-05,
|
1593 |
+
"loss": 0.0718,
|
1594 |
+
"step": 2190
|
1595 |
+
},
|
1596 |
+
{
|
1597 |
+
"epoch": 6.8696330991412955,
|
1598 |
+
"grad_norm": 17.83144187927246,
|
1599 |
+
"learning_rate": 1e-05,
|
1600 |
+
"loss": 0.0884,
|
1601 |
+
"step": 2200
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 6.900858704137392,
|
1605 |
+
"grad_norm": 36.556373596191406,
|
1606 |
+
"learning_rate": 1e-05,
|
1607 |
+
"loss": 0.0755,
|
1608 |
+
"step": 2210
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 6.932084309133489,
|
1612 |
+
"grad_norm": 1.8881489038467407,
|
1613 |
+
"learning_rate": 1e-05,
|
1614 |
+
"loss": 0.0701,
|
1615 |
+
"step": 2220
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 6.963309914129586,
|
1619 |
+
"grad_norm": 0.718502402305603,
|
1620 |
+
"learning_rate": 1e-05,
|
1621 |
+
"loss": 0.0518,
|
1622 |
+
"step": 2230
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 6.994535519125683,
|
1626 |
+
"grad_norm": 126.71410369873047,
|
1627 |
+
"learning_rate": 1e-05,
|
1628 |
+
"loss": 0.1361,
|
1629 |
+
"step": 2240
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 7.02576112412178,
|
1633 |
+
"grad_norm": 31.042253494262695,
|
1634 |
+
"learning_rate": 1e-05,
|
1635 |
+
"loss": 0.018,
|
1636 |
+
"step": 2250
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 7.0569867291178765,
|
1640 |
+
"grad_norm": 3.930874824523926,
|
1641 |
+
"learning_rate": 1e-05,
|
1642 |
+
"loss": 0.0375,
|
1643 |
+
"step": 2260
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 7.088212334113973,
|
1647 |
+
"grad_norm": 5.475597381591797,
|
1648 |
+
"learning_rate": 1e-05,
|
1649 |
+
"loss": 0.0812,
|
1650 |
+
"step": 2270
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 7.11943793911007,
|
1654 |
+
"grad_norm": 0.0065327598713338375,
|
1655 |
+
"learning_rate": 1e-05,
|
1656 |
+
"loss": 0.008,
|
1657 |
+
"step": 2280
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 7.150663544106167,
|
1661 |
+
"grad_norm": 4.2306389808654785,
|
1662 |
+
"learning_rate": 1e-05,
|
1663 |
+
"loss": 0.0085,
|
1664 |
+
"step": 2290
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 7.181889149102264,
|
1668 |
+
"grad_norm": 0.0050476002506911755,
|
1669 |
+
"learning_rate": 1e-05,
|
1670 |
+
"loss": 0.0342,
|
1671 |
+
"step": 2300
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 7.213114754098361,
|
1675 |
+
"grad_norm": 83.71935272216797,
|
1676 |
+
"learning_rate": 1e-05,
|
1677 |
+
"loss": 0.1075,
|
1678 |
+
"step": 2310
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 7.2443403590944575,
|
1682 |
+
"grad_norm": 5.99688720703125,
|
1683 |
+
"learning_rate": 1e-05,
|
1684 |
+
"loss": 0.032,
|
1685 |
+
"step": 2320
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 7.275565964090554,
|
1689 |
+
"grad_norm": 0.8152950406074524,
|
1690 |
+
"learning_rate": 1e-05,
|
1691 |
+
"loss": 0.0473,
|
1692 |
+
"step": 2330
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 7.306791569086651,
|
1696 |
+
"grad_norm": 22.056900024414062,
|
1697 |
+
"learning_rate": 1e-05,
|
1698 |
+
"loss": 0.0473,
|
1699 |
+
"step": 2340
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 7.338017174082748,
|
1703 |
+
"grad_norm": 0.7729480862617493,
|
1704 |
+
"learning_rate": 1e-05,
|
1705 |
+
"loss": 0.0032,
|
1706 |
+
"step": 2350
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 7.369242779078845,
|
1710 |
+
"grad_norm": 0.011774387210607529,
|
1711 |
+
"learning_rate": 1e-05,
|
1712 |
+
"loss": 0.0281,
|
1713 |
+
"step": 2360
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 7.400468384074942,
|
1717 |
+
"grad_norm": 0.002286819973960519,
|
1718 |
+
"learning_rate": 1e-05,
|
1719 |
+
"loss": 0.0241,
|
1720 |
+
"step": 2370
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 7.4316939890710385,
|
1724 |
+
"grad_norm": 3.6069295406341553,
|
1725 |
+
"learning_rate": 1e-05,
|
1726 |
+
"loss": 0.2117,
|
1727 |
+
"step": 2380
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 7.462919594067135,
|
1731 |
+
"grad_norm": 59.043479919433594,
|
1732 |
+
"learning_rate": 1e-05,
|
1733 |
+
"loss": 0.1253,
|
1734 |
+
"step": 2390
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 7.494145199063232,
|
1738 |
+
"grad_norm": 23.903953552246094,
|
1739 |
+
"learning_rate": 1e-05,
|
1740 |
+
"loss": 0.0803,
|
1741 |
+
"step": 2400
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 7.494145199063232,
|
1745 |
+
"eval_accuracy": 0.7,
|
1746 |
+
"eval_loss": 1.1728515625,
|
1747 |
+
"eval_runtime": 0.8741,
|
1748 |
+
"eval_samples_per_second": 11.44,
|
1749 |
+
"eval_steps_per_second": 1.144,
|
1750 |
+
"step": 2400
|
1751 |
+
}
|
1752 |
+
],
|
1753 |
+
"logging_steps": 10,
|
1754 |
+
"max_steps": 2500,
|
1755 |
+
"num_input_tokens_seen": 0,
|
1756 |
+
"num_train_epochs": 8,
|
1757 |
+
"save_steps": 400,
|
1758 |
+
"stateful_callbacks": {
|
1759 |
+
"TrainerControl": {
|
1760 |
+
"args": {
|
1761 |
+
"should_epoch_stop": false,
|
1762 |
+
"should_evaluate": false,
|
1763 |
+
"should_log": false,
|
1764 |
+
"should_save": true,
|
1765 |
+
"should_training_stop": false
|
1766 |
+
},
|
1767 |
+
"attributes": {}
|
1768 |
+
}
|
1769 |
+
},
|
1770 |
+
"total_flos": 2.199744656109994e+18,
|
1771 |
+
"train_batch_size": 4,
|
1772 |
+
"trial_name": null,
|
1773 |
+
"trial_params": null
|
1774 |
+
}
|
checkpoint-2400/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d25dce953fe638888ddcd442f993075f5d6a6b6733071c3ba33f827a1cdecae6
|
3 |
+
size 6136
|
checkpoint-2400/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|