amusktweewt commited on
Commit
fbe24bb
·
verified ·
1 Parent(s): 4b9e5b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -152
README.md CHANGED
@@ -1,199 +1,179 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
 
 
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
168
 
169
- [More Information Needed]
 
 
 
 
 
 
170
 
171
- ## Citation [optional]
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
 
 
 
 
 
 
 
 
 
 
 
190
 
191
- [More Information Needed]
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - SciPhi/textbooks-are-all-you-need-lite
6
+ - nampdn-ai/tiny-textbooks
7
+ - nampdn-ai/tiny-strange-textbooks
8
+ - nampdn-ai/tiny-codes
9
+ - nampdn-ai/tiny-math-textbooks
10
+ - nampdn-ai/tiny-webtext
11
+ - nampdn-ai/tiny-orca-textbooks
12
+ - nampdn-ai/tiny-lessons
13
+ - roneneldan/TinyStories
14
+ - ajibawa-2023/Children-Stories-Collection
15
+ - ajibawa-2023/General-Stories-Collection
16
+ - kerinin/hackernews-stories
17
+ - lucadiliello/wikipedia_512_pretraining
18
+ - Salesforce/wikitext
19
+ - ChristophSchuhmann/basic-math-problems-with-step-by-step-solutions
20
+ - iamtarun/python_code_instructions_18k_alpaca
21
+ - prithivMLmods/Step-Instruction-Gx
22
+ - LinhDuong/chatdoctor-200k
23
+ - MBZUAI/LaMini-instruction
24
+ - qwedsacf/grade-school-math-instructions
25
+ - TigerResearch/tigerbot-stackexchange-qa-en-0.5m
26
+ language:
27
+ - en
28
  ---
29
 
30
+ # amusktweewt/tiny-model-700M-chat
 
 
31
 
32
+ This is a general-purpose transformer-based language model tailored for conversational tasks, story generation, and code-related interactions. It builds upon earlier models in the "tiny" series with increased model size, improved attention efficiency, and optimized training setup.
33
 
34
+ It is more than twice as smart as the 500M model, with a significantly better user experience. It knows more facts and is the first model in this series capable of performing basic arithmetic.
35
 
36
  ## Model Details
37
 
38
  ### Model Description
39
 
40
+ - **Model type:** LlamaForCausalLM
41
+ - **Hidden size:** 816
42
+ - **Layers:** 26
43
+ - **Attention heads:** 12
44
+ - **Key/Value heads:** 6
45
+ - **Intermediate size:** 9856
46
+ - **Total Parameters:** 706M
47
+ - **Tokenizer vocab size:** 32,768
48
+ - **Max sequence length:** 2048 tokens
49
+ - **Rotary Positional Encoding:** Dynamic (factor: 2.0)
50
+ - **Activation:** SiLU
51
+ - **Attention Implementation:** Flash Attention 2
52
+ - **Other optimizations:**
53
+ - Scaled dot-product attention
54
+ - Memory-efficient attention
55
+ - No bias in MLP or attention layers
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  ## Training Details
58
 
59
+ ### Training Configuration
 
 
60
 
61
+ - **Optimizer:** AdamW with 8-bit precision (`adamw_bnb_8bit`)
62
+ - **Learning rate:** 8e-5
63
+ - **Scheduler:** Cosine
64
+ - **Warmup ratio:** 15%
65
+ - **Weight decay:** 0.01
66
+ - **Batch size:** 6 (train), 2 (eval) per device
67
+ - **Gradient accumulation:** 2 steps
68
+ - **Mixed precision:** bfloat16
69
+ - **Epochs:** 1
70
+ - **Training tokens:** 43.6B
71
+ - **Seed:** 42
72
 
73
+ ### Training Hardware
74
 
75
+ - **Hardware:** Assumed similar to 4090-class GPU
76
+ - **Torch Compile:** Enabled (inductor backend)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ## Evaluation
79
 
80
+ - **Perplexity:** 2.177
81
+ - **Eval loss:** 0.7776
 
 
 
 
 
 
 
 
 
 
 
82
 
83
+ In my own custom made benchmark for small models gets the highest grade of all my models
84
 
85
+ ### Intelligence Score Comparison
86
 
87
+ | Model | Intelligence Score |
88
+ |----------------------------------|--------------------:|
89
+ | Gemma-3-27B *(for comparison)* | 8.3 |
90
+ | tiny-model-700M-chat | 4.42841 |
91
+ | tiny-model-141M-chat *(unreleased)* | 2.7 |
92
+ | tiny-model-500M-chat-v2 | 2.50909 |
93
+ | tiny-model-500M-chat-v2-5-exp | 2.08295 |
94
 
 
95
 
96
+ ## Usage and Applications
97
 
98
+ ### Direct Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ This model is suitable for:
101
+ - Text and dialogue generation
102
+ - Educational tasks
103
+ - Code completion and explanation
104
+ - Story creation
105
 
106
+ ### Not Recommended For
107
 
108
+ - High factual precision tasks
109
+ - Sensitive or critical domains without human supervision
110
 
111
+ ## How to Get Started
112
 
113
+ ```python
114
+ import torch
115
+ from transformers import pipeline, set_seed
116
 
117
+ # Set up the text-generation pipeline
118
+ model_name = "amusktweewt/tiny-model-700M-chat"
119
+ chatbot = pipeline(
120
+ "text-generation",
121
+ model=model_name,
122
+ device=0 if torch.cuda.is_available() else -1
123
+ )
124
 
125
+ # Ensure that bos_token and eos_token are explicitly set as strings
126
+ chatbot.tokenizer.bos_token = "<sos>"
127
+ chatbot.tokenizer.eos_token = "<|endoftext|>"
128
 
129
+ # Set seed for reproducibility (optional)
130
+ set_seed(42)
131
 
132
+ print("Chatbot is ready! Type 'exit' to end the conversation.")
133
 
134
+ # Initialize the conversation history
135
+ conversation_history = []
136
 
137
+ conversation_history.append({"role": "system", "content": "You are a highly intelligent and helpful AI assistant named Tiny Chat, developed by amusktweewt. Always refer to yourself like that. Your responses should be clear, concise, and accurate. Always prioritize user needs, provide well-structured answers, and maintain a friendly yet professional tone. Adapt to the user's preferences and communication style. When needed, ask clarifying questions to ensure the best response. Be honest about limitations and avoid making assumptions. Keep interactions engaging, informative, and efficient."})
138
 
139
+ while True:
140
+ user_input = input("You: ").strip()
141
+ if user_input.lower() == "exit":
142
+ print("Exiting chat. Goodbye!")
143
+ break
144
 
145
+ # Append user message to the conversation history
146
+ conversation_history.append({"role": "user", "content": user_input})
147
 
148
+ # Prepare the messages with the conversation history and an empty assistant turn
149
+ messages = conversation_history + [{"role": "assistant", "content": ""}]
150
 
151
+ # Use the tokenizer's apply_chat_template() method to format the prompt.
152
+ prompt = chatbot.tokenizer.apply_chat_template(messages, tokenize=False)
153
 
154
+ # Generate text using the formatted prompt.
155
+ response = chatbot(
156
+ prompt,
157
+ do_sample=True,
158
+ max_new_tokens=512,
159
+ top_k=50,
160
+ temperature=0.6,
161
+ num_return_sequences=1,
162
+ repetition_penalty=1.1,
163
+ pad_token_id=chatbot.tokenizer.eos_token_id,
164
+ min_new_tokens=20
165
+ )
166
 
167
+ # The returned 'generated_text' includes the prompt plus the generation.
168
+ full_text = response[0]["generated_text"]
169
+ # Extract the assistant's response by removing the prompt portion.
170
+ bot_response = full_text[len(prompt):].strip()
171
+ print(f"Bot: {bot_response}")
172
+ ```
173
 
174
+ ## Contact
175
 
176
+ **Author:** amusktweewt
177
 
178
+ For issues or feedback, please reach out via Hugging Face profile.
179