from lpips_pytorch import LPIPS import torch class LPIPS1(LPIPS): r""" Overrriding the LPIPS to send loss without reducing the batch Arguments: net_type (str): the network type to compare the features: 'alex' | 'squeeze' | 'vgg'. Default: 'alex'. version (str): the version of LPIPS. Default: 0.1. """ def __init__(self, net_type: str = 'alex', version: str = '0.1'): super(LPIPS1, self).__init__(net_type = 'alex', version ='0.1') def forward(self, x: torch.Tensor, y: torch.Tensor): feat_x, feat_y = self.net(x), self.net(y) diff = [(fx - fy) ** 2 for fx, fy in zip(feat_x, feat_y)] res = [l(d).mean((2, 3), True) for d, l in zip(diff, self.lin)] # return torch.sum(torch.cat(res, 0), 0, True) return torch.sum(torch.cat(res, 1), 1, True)