|
|
|
|
|
|
|
|
|
|
|
|
|
import itertools |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from pytorch3d.structures import utils as struct_utils |
|
from pytorch3d.structures.pointclouds import ( |
|
join_pointclouds_as_batch, |
|
join_pointclouds_as_scene, |
|
Pointclouds, |
|
) |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
class TestPointclouds(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
np.random.seed(42) |
|
torch.manual_seed(42) |
|
|
|
@staticmethod |
|
def init_cloud( |
|
num_clouds: int = 3, |
|
max_points: int = 100, |
|
channels: int = 4, |
|
lists_to_tensors: bool = False, |
|
with_normals: bool = True, |
|
with_features: bool = True, |
|
min_points: int = 0, |
|
requires_grad: bool = False, |
|
): |
|
""" |
|
Function to generate a Pointclouds object of N meshes with |
|
random number of points. |
|
|
|
Args: |
|
num_clouds: Number of clouds to generate. |
|
channels: Number of features. |
|
max_points: Max number of points per cloud. |
|
lists_to_tensors: Determines whether the generated clouds should be |
|
constructed from lists (=False) or |
|
tensors (=True) of points/normals/features. |
|
with_normals: bool whether to include normals |
|
with_features: bool whether to include features |
|
min_points: Min number of points per cloud |
|
|
|
Returns: |
|
Pointclouds object. |
|
""" |
|
device = torch.device("cuda:0") |
|
p = torch.randint(low=min_points, high=max_points, size=(num_clouds,)) |
|
if lists_to_tensors: |
|
p.fill_(p[0]) |
|
|
|
points_list = [ |
|
torch.rand( |
|
(i, 3), device=device, dtype=torch.float32, requires_grad=requires_grad |
|
) |
|
for i in p |
|
] |
|
normals_list, features_list = None, None |
|
if with_normals: |
|
normals_list = [ |
|
torch.rand( |
|
(i, 3), |
|
device=device, |
|
dtype=torch.float32, |
|
requires_grad=requires_grad, |
|
) |
|
for i in p |
|
] |
|
if with_features: |
|
features_list = [ |
|
torch.rand( |
|
(i, channels), |
|
device=device, |
|
dtype=torch.float32, |
|
requires_grad=requires_grad, |
|
) |
|
for i in p |
|
] |
|
|
|
if lists_to_tensors: |
|
points_list = torch.stack(points_list) |
|
if with_normals: |
|
normals_list = torch.stack(normals_list) |
|
if with_features: |
|
features_list = torch.stack(features_list) |
|
|
|
return Pointclouds(points_list, normals=normals_list, features=features_list) |
|
|
|
def test_simple(self): |
|
device = torch.device("cuda:0") |
|
points = [ |
|
torch.tensor( |
|
[[0.1, 0.3, 0.5], [0.5, 0.2, 0.1], [0.6, 0.8, 0.7]], |
|
dtype=torch.float32, |
|
device=device, |
|
), |
|
torch.tensor( |
|
[[0.1, 0.3, 0.3], [0.6, 0.7, 0.8], [0.2, 0.3, 0.4], [0.1, 0.5, 0.3]], |
|
dtype=torch.float32, |
|
device=device, |
|
), |
|
torch.tensor( |
|
[ |
|
[0.7, 0.3, 0.6], |
|
[0.2, 0.4, 0.8], |
|
[0.9, 0.5, 0.2], |
|
[0.2, 0.3, 0.4], |
|
[0.9, 0.3, 0.8], |
|
], |
|
dtype=torch.float32, |
|
device=device, |
|
), |
|
] |
|
clouds = Pointclouds(points) |
|
|
|
self.assertClose( |
|
(clouds.packed_to_cloud_idx()).cpu(), |
|
torch.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]), |
|
) |
|
self.assertClose( |
|
clouds.cloud_to_packed_first_idx().cpu(), torch.tensor([0, 3, 7]) |
|
) |
|
self.assertClose(clouds.num_points_per_cloud().cpu(), torch.tensor([3, 4, 5])) |
|
self.assertClose( |
|
clouds.padded_to_packed_idx().cpu(), |
|
torch.tensor([0, 1, 2, 5, 6, 7, 8, 10, 11, 12, 13, 14]), |
|
) |
|
|
|
def test_init_error(self): |
|
|
|
|
|
|
|
clouds = self.init_cloud(10, 100, 5) |
|
points_list = clouds.points_list() |
|
points_list = [ |
|
p.to("cpu") if random.uniform(0, 1) > 0.5 else p for p in points_list |
|
] |
|
features_list = clouds.features_list() |
|
normals_list = clouds.normals_list() |
|
|
|
with self.assertRaisesRegex(ValueError, "same device"): |
|
Pointclouds( |
|
points=points_list, features=features_list, normals=normals_list |
|
) |
|
|
|
points_list = clouds.points_list() |
|
features_list = [ |
|
f.to("cpu") if random.uniform(0, 1) > 0.2 else f for f in features_list |
|
] |
|
with self.assertRaisesRegex(ValueError, "same device"): |
|
Pointclouds( |
|
points=points_list, features=features_list, normals=normals_list |
|
) |
|
|
|
points_padded = clouds.points_padded() |
|
features_padded = clouds.features_padded().to("cpu") |
|
normals_padded = clouds.normals_padded() |
|
|
|
with self.assertRaisesRegex(ValueError, "same device"): |
|
Pointclouds( |
|
points=points_padded, features=features_padded, normals=normals_padded |
|
) |
|
|
|
def test_all_constructions(self): |
|
public_getters = [ |
|
"points_list", |
|
"points_packed", |
|
"packed_to_cloud_idx", |
|
"cloud_to_packed_first_idx", |
|
"num_points_per_cloud", |
|
"points_padded", |
|
"padded_to_packed_idx", |
|
] |
|
public_normals_getters = ["normals_list", "normals_packed", "normals_padded"] |
|
public_features_getters = [ |
|
"features_list", |
|
"features_packed", |
|
"features_padded", |
|
] |
|
|
|
lengths = [3, 4, 2] |
|
max_len = max(lengths) |
|
C = 4 |
|
|
|
points_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths] |
|
normals_data = [torch.zeros((max_len, 3)).uniform_() for i in lengths] |
|
features_data = [torch.zeros((max_len, C)).uniform_() for i in lengths] |
|
for length, p, n, f in zip(lengths, points_data, normals_data, features_data): |
|
p[length:] = 0.0 |
|
n[length:] = 0.0 |
|
f[length:] = 0.0 |
|
points_list = [d[:length] for length, d in zip(lengths, points_data)] |
|
normals_list = [d[:length] for length, d in zip(lengths, normals_data)] |
|
features_list = [d[:length] for length, d in zip(lengths, features_data)] |
|
points_packed = torch.cat(points_data) |
|
normals_packed = torch.cat(normals_data) |
|
features_packed = torch.cat(features_data) |
|
test_cases_inputs = [ |
|
("list_0_0", points_list, None, None), |
|
("list_1_0", points_list, normals_list, None), |
|
("list_0_1", points_list, None, features_list), |
|
("list_1_1", points_list, normals_list, features_list), |
|
("padded_0_0", points_data, None, None), |
|
("padded_1_0", points_data, normals_data, None), |
|
("padded_0_1", points_data, None, features_data), |
|
("padded_1_1", points_data, normals_data, features_data), |
|
("emptylist_emptylist_emptylist", [], [], []), |
|
] |
|
false_cases_inputs = [ |
|
("list_packed", points_list, normals_packed, features_packed, ValueError), |
|
("packed_0", points_packed, None, None, ValueError), |
|
] |
|
|
|
for name, points, normals, features in test_cases_inputs: |
|
with self.subTest(name=name): |
|
p = Pointclouds(points, normals, features) |
|
for method in public_getters: |
|
self.assertIsNotNone(getattr(p, method)()) |
|
for method in public_normals_getters: |
|
if normals is None or p.isempty(): |
|
self.assertIsNone(getattr(p, method)()) |
|
for method in public_features_getters: |
|
if features is None or p.isempty(): |
|
self.assertIsNone(getattr(p, method)()) |
|
|
|
for name, points, normals, features, error in false_cases_inputs: |
|
with self.subTest(name=name): |
|
with self.assertRaises(error): |
|
Pointclouds(points, normals, features) |
|
|
|
def test_simple_random_clouds(self): |
|
|
|
for with_normals in (False, True): |
|
for with_features in (False, True): |
|
for lists_to_tensors in (False, True): |
|
N = 10 |
|
cloud = self.init_cloud( |
|
N, |
|
lists_to_tensors=lists_to_tensors, |
|
with_normals=with_normals, |
|
with_features=with_features, |
|
) |
|
points_list = cloud.points_list() |
|
normals_list = cloud.normals_list() |
|
features_list = cloud.features_list() |
|
|
|
|
|
points_padded = cloud.points_padded() |
|
normals_padded = cloud.normals_padded() |
|
features_padded = cloud.features_padded() |
|
points_per_cloud = cloud.num_points_per_cloud() |
|
|
|
if not with_normals: |
|
self.assertIsNone(normals_list) |
|
self.assertIsNone(normals_padded) |
|
if not with_features: |
|
self.assertIsNone(features_list) |
|
self.assertIsNone(features_padded) |
|
for n in range(N): |
|
p = points_list[n].shape[0] |
|
self.assertClose(points_padded[n, :p, :], points_list[n]) |
|
if with_normals: |
|
norms = normals_list[n].shape[0] |
|
self.assertEqual(p, norms) |
|
self.assertClose(normals_padded[n, :p, :], normals_list[n]) |
|
if with_features: |
|
f = features_list[n].shape[0] |
|
self.assertEqual(p, f) |
|
self.assertClose( |
|
features_padded[n, :p, :], features_list[n] |
|
) |
|
if points_padded.shape[1] > p: |
|
self.assertTrue(points_padded[n, p:, :].eq(0).all()) |
|
if with_features: |
|
self.assertTrue(features_padded[n, p:, :].eq(0).all()) |
|
self.assertEqual(points_per_cloud[n], p) |
|
|
|
|
|
points_packed = cloud.points_packed() |
|
packed_to_cloud = cloud.packed_to_cloud_idx() |
|
cloud_to_packed = cloud.cloud_to_packed_first_idx() |
|
normals_packed = cloud.normals_packed() |
|
features_packed = cloud.features_packed() |
|
if not with_normals: |
|
self.assertIsNone(normals_packed) |
|
if not with_features: |
|
self.assertIsNone(features_packed) |
|
|
|
cur = 0 |
|
for n in range(N): |
|
p = points_list[n].shape[0] |
|
self.assertClose( |
|
points_packed[cur : cur + p, :], points_list[n] |
|
) |
|
if with_normals: |
|
self.assertClose( |
|
normals_packed[cur : cur + p, :], normals_list[n] |
|
) |
|
if with_features: |
|
self.assertClose( |
|
features_packed[cur : cur + p, :], features_list[n] |
|
) |
|
self.assertTrue(packed_to_cloud[cur : cur + p].eq(n).all()) |
|
self.assertTrue(cloud_to_packed[n] == cur) |
|
cur += p |
|
|
|
def test_allempty(self): |
|
clouds = Pointclouds([], []) |
|
self.assertEqual(len(clouds), 0) |
|
self.assertIsNone(clouds.normals_list()) |
|
self.assertIsNone(clouds.features_list()) |
|
self.assertEqual(clouds.points_padded().shape[0], 0) |
|
self.assertIsNone(clouds.normals_padded()) |
|
self.assertIsNone(clouds.features_padded()) |
|
self.assertEqual(clouds.points_packed().shape[0], 0) |
|
self.assertIsNone(clouds.normals_packed()) |
|
self.assertIsNone(clouds.features_packed()) |
|
|
|
def test_empty(self): |
|
N, P, C = 10, 100, 2 |
|
device = torch.device("cuda:0") |
|
points_list = [] |
|
normals_list = [] |
|
features_list = [] |
|
valid = torch.randint(2, size=(N,), dtype=torch.uint8, device=device) |
|
for n in range(N): |
|
if valid[n]: |
|
p = torch.randint( |
|
3, high=P, size=(1,), dtype=torch.int32, device=device |
|
)[0] |
|
points = torch.rand((p, 3), dtype=torch.float32, device=device) |
|
normals = torch.rand((p, 3), dtype=torch.float32, device=device) |
|
features = torch.rand((p, C), dtype=torch.float32, device=device) |
|
else: |
|
points = torch.tensor([], dtype=torch.float32, device=device) |
|
normals = torch.tensor([], dtype=torch.float32, device=device) |
|
features = torch.tensor([], dtype=torch.int64, device=device) |
|
points_list.append(points) |
|
normals_list.append(normals) |
|
features_list.append(features) |
|
|
|
for with_normals in (False, True): |
|
for with_features in (False, True): |
|
this_features, this_normals = None, None |
|
if with_normals: |
|
this_normals = normals_list |
|
if with_features: |
|
this_features = features_list |
|
clouds = Pointclouds( |
|
points=points_list, normals=this_normals, features=this_features |
|
) |
|
points_padded = clouds.points_padded() |
|
normals_padded = clouds.normals_padded() |
|
features_padded = clouds.features_padded() |
|
if not with_normals: |
|
self.assertIsNone(normals_padded) |
|
if not with_features: |
|
self.assertIsNone(features_padded) |
|
points_per_cloud = clouds.num_points_per_cloud() |
|
for n in range(N): |
|
p = len(points_list[n]) |
|
if p > 0: |
|
self.assertClose(points_padded[n, :p, :], points_list[n]) |
|
if with_normals: |
|
self.assertClose(normals_padded[n, :p, :], normals_list[n]) |
|
if with_features: |
|
self.assertClose( |
|
features_padded[n, :p, :], features_list[n] |
|
) |
|
if points_padded.shape[1] > p: |
|
self.assertTrue(points_padded[n, p:, :].eq(0).all()) |
|
if with_normals: |
|
self.assertTrue(normals_padded[n, p:, :].eq(0).all()) |
|
if with_features: |
|
self.assertTrue(features_padded[n, p:, :].eq(0).all()) |
|
self.assertTrue(points_per_cloud[n] == p) |
|
|
|
def test_list_someempty(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
points_list = [torch.rand(30, 3), torch.zeros(0, 3)] |
|
features_list = [torch.rand(30, 3), None] |
|
pcls = Pointclouds(points=points_list, features=features_list) |
|
self.assertEqual(len(pcls), 2) |
|
self.assertClose( |
|
pcls.points_padded(), |
|
torch.stack([points_list[0], torch.zeros_like(points_list[0])]), |
|
) |
|
self.assertClose(pcls.points_packed(), points_list[0]) |
|
self.assertClose( |
|
pcls.features_padded(), |
|
torch.stack([features_list[0], torch.zeros_like(points_list[0])]), |
|
) |
|
self.assertClose(pcls.features_packed(), features_list[0]) |
|
|
|
points_list = [torch.zeros(0, 3), torch.rand(30, 3)] |
|
features_list = [None, torch.rand(30, 3)] |
|
pcls = Pointclouds(points=points_list, features=features_list) |
|
self.assertEqual(len(pcls), 2) |
|
self.assertClose( |
|
pcls.points_padded(), |
|
torch.stack([torch.zeros_like(points_list[1]), points_list[1]]), |
|
) |
|
self.assertClose(pcls.points_packed(), points_list[1]) |
|
self.assertClose( |
|
pcls.features_padded(), |
|
torch.stack([torch.zeros_like(points_list[1]), features_list[1]]), |
|
) |
|
self.assertClose(pcls.features_packed(), features_list[1]) |
|
|
|
def test_clone_list(self): |
|
N = 5 |
|
clouds = self.init_cloud(N, 100, 5) |
|
for force in (False, True): |
|
if force: |
|
clouds.points_packed() |
|
|
|
new_clouds = clouds.clone() |
|
|
|
|
|
self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0]) |
|
self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0]) |
|
self.assertSeparate( |
|
new_clouds.features_list()[0], clouds.features_list()[0] |
|
) |
|
for attrib in [ |
|
"points_packed", |
|
"normals_packed", |
|
"features_packed", |
|
"points_padded", |
|
"normals_padded", |
|
"features_padded", |
|
]: |
|
self.assertSeparate( |
|
getattr(new_clouds, attrib)(), getattr(clouds, attrib)() |
|
) |
|
|
|
self.assertCloudsEqual(clouds, new_clouds) |
|
|
|
def test_clone_tensor(self): |
|
N = 5 |
|
clouds = self.init_cloud(N, 100, 5, lists_to_tensors=True) |
|
for force in (False, True): |
|
if force: |
|
clouds.points_packed() |
|
|
|
new_clouds = clouds.clone() |
|
|
|
|
|
self.assertSeparate(new_clouds.points_list()[0], clouds.points_list()[0]) |
|
self.assertSeparate(new_clouds.normals_list()[0], clouds.normals_list()[0]) |
|
self.assertSeparate( |
|
new_clouds.features_list()[0], clouds.features_list()[0] |
|
) |
|
for attrib in [ |
|
"points_packed", |
|
"normals_packed", |
|
"features_packed", |
|
"points_padded", |
|
"normals_padded", |
|
"features_padded", |
|
]: |
|
self.assertSeparate( |
|
getattr(new_clouds, attrib)(), getattr(clouds, attrib)() |
|
) |
|
|
|
self.assertCloudsEqual(clouds, new_clouds) |
|
|
|
def test_detach(self): |
|
N = 5 |
|
for lists_to_tensors in (True, False): |
|
clouds = self.init_cloud( |
|
N, 100, 5, lists_to_tensors=lists_to_tensors, requires_grad=True |
|
) |
|
for force in (False, True): |
|
if force: |
|
clouds.points_packed() |
|
|
|
new_clouds = clouds.detach() |
|
|
|
for cloud in new_clouds.points_list(): |
|
self.assertFalse(cloud.requires_grad) |
|
for normal in new_clouds.normals_list(): |
|
self.assertFalse(normal.requires_grad) |
|
for feats in new_clouds.features_list(): |
|
self.assertFalse(feats.requires_grad) |
|
|
|
for attrib in [ |
|
"points_packed", |
|
"normals_packed", |
|
"features_packed", |
|
"points_padded", |
|
"normals_padded", |
|
"features_padded", |
|
]: |
|
self.assertFalse(getattr(new_clouds, attrib)().requires_grad) |
|
|
|
self.assertCloudsEqual(clouds, new_clouds) |
|
|
|
def assertCloudsEqual(self, cloud1, cloud2): |
|
N = len(cloud1) |
|
self.assertEqual(N, len(cloud2)) |
|
|
|
for i in range(N): |
|
self.assertClose(cloud1.points_list()[i], cloud2.points_list()[i]) |
|
self.assertClose(cloud1.normals_list()[i], cloud2.normals_list()[i]) |
|
self.assertClose(cloud1.features_list()[i], cloud2.features_list()[i]) |
|
has_normals = cloud1.normals_list() is not None |
|
self.assertTrue(has_normals == (cloud2.normals_list() is not None)) |
|
has_features = cloud1.features_list() is not None |
|
self.assertTrue(has_features == (cloud2.features_list() is not None)) |
|
|
|
|
|
self.assertClose(cloud1.points_padded(), cloud2.points_padded()) |
|
self.assertClose(cloud1.points_packed(), cloud2.points_packed()) |
|
if has_normals: |
|
self.assertClose(cloud1.normals_padded(), cloud2.normals_padded()) |
|
self.assertClose(cloud1.normals_packed(), cloud2.normals_packed()) |
|
if has_features: |
|
self.assertClose(cloud1.features_padded(), cloud2.features_padded()) |
|
self.assertClose(cloud1.features_packed(), cloud2.features_packed()) |
|
self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx()) |
|
self.assertClose( |
|
cloud1.cloud_to_packed_first_idx(), cloud2.cloud_to_packed_first_idx() |
|
) |
|
self.assertClose(cloud1.num_points_per_cloud(), cloud2.num_points_per_cloud()) |
|
self.assertClose(cloud1.packed_to_cloud_idx(), cloud2.packed_to_cloud_idx()) |
|
self.assertClose(cloud1.padded_to_packed_idx(), cloud2.padded_to_packed_idx()) |
|
self.assertTrue(all(cloud1.valid == cloud2.valid)) |
|
self.assertTrue(cloud1.equisized == cloud2.equisized) |
|
|
|
def test_offset(self): |
|
def naive_offset(clouds, offsets_packed): |
|
new_points_packed = clouds.points_packed() + offsets_packed |
|
new_points_list = list( |
|
new_points_packed.split(clouds.num_points_per_cloud().tolist(), 0) |
|
) |
|
return Pointclouds( |
|
points=new_points_list, |
|
normals=clouds.normals_list(), |
|
features=clouds.features_list(), |
|
) |
|
|
|
N = 5 |
|
clouds = self.init_cloud(N, 100, 10) |
|
all_p = clouds.points_packed().size(0) |
|
points_per_cloud = clouds.num_points_per_cloud() |
|
for force, deform_shape in itertools.product((0, 1), [(all_p, 3), 3]): |
|
if force: |
|
clouds._compute_packed(refresh=True) |
|
clouds._compute_padded() |
|
clouds.padded_to_packed_idx() |
|
|
|
deform = torch.rand(deform_shape, dtype=torch.float32, device=clouds.device) |
|
new_clouds_naive = naive_offset(clouds, deform) |
|
|
|
new_clouds = clouds.offset(deform) |
|
|
|
points_cumsum = torch.cumsum(points_per_cloud, 0).tolist() |
|
points_cumsum.insert(0, 0) |
|
for i in range(N): |
|
item_offset = ( |
|
deform |
|
if deform.ndim == 1 |
|
else deform[points_cumsum[i] : points_cumsum[i + 1]] |
|
) |
|
self.assertClose( |
|
new_clouds.points_list()[i], |
|
clouds.points_list()[i] + item_offset, |
|
) |
|
self.assertClose( |
|
clouds.normals_list()[i], new_clouds_naive.normals_list()[i] |
|
) |
|
self.assertClose( |
|
clouds.features_list()[i], new_clouds_naive.features_list()[i] |
|
) |
|
self.assertCloudsEqual(new_clouds, new_clouds_naive) |
|
|
|
def test_scale(self): |
|
def naive_scale(cloud, scale): |
|
if not torch.is_tensor(scale): |
|
scale = torch.full((len(cloud),), scale, device=cloud.device) |
|
new_points_list = [ |
|
scale[i] * points.clone() |
|
for (i, points) in enumerate(cloud.points_list()) |
|
] |
|
return Pointclouds( |
|
new_points_list, cloud.normals_list(), cloud.features_list() |
|
) |
|
|
|
N = 5 |
|
for test in ["tensor", "scalar"]: |
|
for force in (False, True): |
|
clouds = self.init_cloud(N, 100, 10) |
|
if force: |
|
clouds._compute_packed(refresh=True) |
|
clouds._compute_padded() |
|
clouds.padded_to_packed_idx() |
|
if test == "tensor": |
|
scales = torch.rand(N) |
|
elif test == "scalar": |
|
scales = torch.rand(1)[0].item() |
|
new_clouds_naive = naive_scale(clouds, scales) |
|
new_clouds = clouds.scale(scales) |
|
for i in range(N): |
|
if test == "tensor": |
|
self.assertClose( |
|
scales[i] * clouds.points_list()[i], |
|
new_clouds.points_list()[i], |
|
) |
|
else: |
|
self.assertClose( |
|
scales * clouds.points_list()[i], |
|
new_clouds.points_list()[i], |
|
) |
|
self.assertClose( |
|
clouds.normals_list()[i], new_clouds_naive.normals_list()[i] |
|
) |
|
self.assertClose( |
|
clouds.features_list()[i], new_clouds_naive.features_list()[i] |
|
) |
|
self.assertCloudsEqual(new_clouds, new_clouds_naive) |
|
|
|
def test_extend_list(self): |
|
N = 10 |
|
clouds = self.init_cloud(N, 100, 10) |
|
for force in (False, True): |
|
if force: |
|
|
|
clouds._compute_packed(refresh=True) |
|
clouds._compute_padded() |
|
clouds.padded_to_packed_idx() |
|
new_clouds = clouds.extend(N) |
|
self.assertEqual(len(clouds) * 10, len(new_clouds)) |
|
for i in range(len(clouds)): |
|
for n in range(N): |
|
self.assertClose( |
|
clouds.points_list()[i], new_clouds.points_list()[i * N + n] |
|
) |
|
self.assertClose( |
|
clouds.normals_list()[i], new_clouds.normals_list()[i * N + n] |
|
) |
|
self.assertClose( |
|
clouds.features_list()[i], new_clouds.features_list()[i * N + n] |
|
) |
|
self.assertTrue(clouds.valid[i] == new_clouds.valid[i * N + n]) |
|
self.assertAllSeparate( |
|
clouds.points_list() |
|
+ new_clouds.points_list() |
|
+ clouds.normals_list() |
|
+ new_clouds.normals_list() |
|
+ clouds.features_list() |
|
+ new_clouds.features_list() |
|
) |
|
self.assertIsNone(new_clouds._points_packed) |
|
self.assertIsNone(new_clouds._normals_packed) |
|
self.assertIsNone(new_clouds._features_packed) |
|
self.assertIsNone(new_clouds._points_padded) |
|
self.assertIsNone(new_clouds._normals_padded) |
|
self.assertIsNone(new_clouds._features_padded) |
|
|
|
with self.assertRaises(ValueError): |
|
clouds.extend(N=-1) |
|
|
|
def test_to(self): |
|
cloud = self.init_cloud(5, 100, 10) |
|
|
|
cuda_device = torch.device("cuda:0") |
|
|
|
converted_cloud = cloud.to("cuda:0") |
|
self.assertEqual(cuda_device, converted_cloud.device) |
|
self.assertEqual(cuda_device, cloud.device) |
|
self.assertIs(cloud, converted_cloud) |
|
|
|
converted_cloud = cloud.to(cuda_device) |
|
self.assertEqual(cuda_device, converted_cloud.device) |
|
self.assertEqual(cuda_device, cloud.device) |
|
self.assertIs(cloud, converted_cloud) |
|
|
|
cpu_device = torch.device("cpu") |
|
|
|
converted_cloud = cloud.to("cpu") |
|
self.assertEqual(cpu_device, converted_cloud.device) |
|
self.assertEqual(cuda_device, cloud.device) |
|
self.assertIsNot(cloud, converted_cloud) |
|
|
|
converted_cloud = cloud.to(cpu_device) |
|
self.assertEqual(cpu_device, converted_cloud.device) |
|
self.assertEqual(cuda_device, cloud.device) |
|
self.assertIsNot(cloud, converted_cloud) |
|
|
|
def test_to_list(self): |
|
cloud = self.init_cloud(5, 100, 10) |
|
device = torch.device("cuda:1") |
|
|
|
new_cloud = cloud.to(device) |
|
self.assertTrue(new_cloud.device == device) |
|
self.assertTrue(cloud.device == torch.device("cuda:0")) |
|
for attrib in [ |
|
"points_padded", |
|
"points_packed", |
|
"normals_padded", |
|
"normals_packed", |
|
"features_padded", |
|
"features_packed", |
|
"num_points_per_cloud", |
|
"cloud_to_packed_first_idx", |
|
"padded_to_packed_idx", |
|
]: |
|
self.assertClose( |
|
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu() |
|
) |
|
for i in range(len(cloud)): |
|
self.assertClose( |
|
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu() |
|
) |
|
self.assertClose( |
|
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu() |
|
) |
|
self.assertClose( |
|
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu() |
|
) |
|
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu())) |
|
self.assertTrue(cloud.equisized == new_cloud.equisized) |
|
self.assertTrue(cloud._N == new_cloud._N) |
|
self.assertTrue(cloud._P == new_cloud._P) |
|
self.assertTrue(cloud._C == new_cloud._C) |
|
|
|
def test_to_tensor(self): |
|
cloud = self.init_cloud(5, 100, 10, lists_to_tensors=True) |
|
device = torch.device("cuda:1") |
|
|
|
new_cloud = cloud.to(device) |
|
self.assertTrue(new_cloud.device == device) |
|
self.assertTrue(cloud.device == torch.device("cuda:0")) |
|
for attrib in [ |
|
"points_padded", |
|
"points_packed", |
|
"normals_padded", |
|
"normals_packed", |
|
"features_padded", |
|
"features_packed", |
|
"num_points_per_cloud", |
|
"cloud_to_packed_first_idx", |
|
"padded_to_packed_idx", |
|
]: |
|
self.assertClose( |
|
getattr(new_cloud, attrib)().cpu(), getattr(cloud, attrib)().cpu() |
|
) |
|
for i in range(len(cloud)): |
|
self.assertClose( |
|
cloud.points_list()[i].cpu(), new_cloud.points_list()[i].cpu() |
|
) |
|
self.assertClose( |
|
cloud.normals_list()[i].cpu(), new_cloud.normals_list()[i].cpu() |
|
) |
|
self.assertClose( |
|
cloud.features_list()[i].cpu(), new_cloud.features_list()[i].cpu() |
|
) |
|
self.assertTrue(all(cloud.valid.cpu() == new_cloud.valid.cpu())) |
|
self.assertTrue(cloud.equisized == new_cloud.equisized) |
|
self.assertTrue(cloud._N == new_cloud._N) |
|
self.assertTrue(cloud._P == new_cloud._P) |
|
self.assertTrue(cloud._C == new_cloud._C) |
|
|
|
def test_split(self): |
|
clouds = self.init_cloud(5, 100, 10) |
|
split_sizes = [2, 3] |
|
split_clouds = clouds.split(split_sizes) |
|
self.assertEqual(len(split_clouds[0]), 2) |
|
self.assertTrue( |
|
split_clouds[0].points_list() |
|
== [clouds.get_cloud(0)[0], clouds.get_cloud(1)[0]] |
|
) |
|
self.assertEqual(len(split_clouds[1]), 3) |
|
self.assertTrue( |
|
split_clouds[1].points_list() |
|
== [clouds.get_cloud(2)[0], clouds.get_cloud(3)[0], clouds.get_cloud(4)[0]] |
|
) |
|
|
|
split_sizes = [2, 0.3] |
|
with self.assertRaises(ValueError): |
|
clouds.split(split_sizes) |
|
|
|
def test_get_cloud(self): |
|
clouds = self.init_cloud(2, 100, 10) |
|
for i in range(len(clouds)): |
|
points, normals, features = clouds.get_cloud(i) |
|
self.assertClose(points, clouds.points_list()[i]) |
|
self.assertClose(normals, clouds.normals_list()[i]) |
|
self.assertClose(features, clouds.features_list()[i]) |
|
|
|
with self.assertRaises(ValueError): |
|
clouds.get_cloud(5) |
|
with self.assertRaises(ValueError): |
|
clouds.get_cloud(0.2) |
|
|
|
def test_get_bounding_boxes(self): |
|
device = torch.device("cuda:0") |
|
points_list = [] |
|
for size in [10]: |
|
points = torch.rand((size, 3), dtype=torch.float32, device=device) |
|
points_list.append(points) |
|
|
|
mins = torch.min(points, dim=0)[0] |
|
maxs = torch.max(points, dim=0)[0] |
|
bboxes_gt = torch.stack([mins, maxs], dim=1).unsqueeze(0) |
|
clouds = Pointclouds(points_list) |
|
bboxes = clouds.get_bounding_boxes() |
|
self.assertClose(bboxes_gt, bboxes) |
|
|
|
def test_padded_to_packed_idx(self): |
|
device = torch.device("cuda:0") |
|
points_list = [] |
|
npoints = [10, 20, 30] |
|
for p in npoints: |
|
points = torch.rand((p, 3), dtype=torch.float32, device=device) |
|
points_list.append(points) |
|
|
|
clouds = Pointclouds(points_list) |
|
|
|
padded_to_packed_idx = clouds.padded_to_packed_idx() |
|
points_packed = clouds.points_packed() |
|
points_padded = clouds.points_padded() |
|
points_padded_flat = points_padded.view(-1, 3) |
|
|
|
self.assertClose(points_padded_flat[padded_to_packed_idx], points_packed) |
|
|
|
idx = padded_to_packed_idx.view(-1, 1).expand(-1, 3) |
|
self.assertClose(points_padded_flat.gather(0, idx), points_packed) |
|
|
|
def test_getitem(self): |
|
device = torch.device("cuda:0") |
|
clouds = self.init_cloud(3, 10, 100) |
|
|
|
def check_equal(selected, indices): |
|
for selectedIdx, index in indices: |
|
self.assertClose( |
|
selected.points_list()[selectedIdx], clouds.points_list()[index] |
|
) |
|
self.assertClose( |
|
selected.normals_list()[selectedIdx], clouds.normals_list()[index] |
|
) |
|
self.assertClose( |
|
selected.features_list()[selectedIdx], clouds.features_list()[index] |
|
) |
|
|
|
|
|
index = 1 |
|
clouds_selected = clouds[index] |
|
self.assertEqual(len(clouds_selected), 1) |
|
check_equal(clouds_selected, [(0, 1)]) |
|
|
|
|
|
index = [1, 2] |
|
clouds_selected = clouds[index] |
|
self.assertEqual(len(clouds_selected), len(index)) |
|
check_equal(clouds_selected, enumerate(index)) |
|
|
|
|
|
index = slice(0, 2, 1) |
|
clouds_selected = clouds[index] |
|
self.assertEqual(len(clouds_selected), 2) |
|
check_equal(clouds_selected, [(0, 0), (1, 1)]) |
|
|
|
|
|
index = torch.tensor([1, 0, 1], dtype=torch.bool, device=device) |
|
clouds_selected = clouds[index] |
|
self.assertEqual(len(clouds_selected), index.sum()) |
|
check_equal(clouds_selected, [(0, 0), (1, 2)]) |
|
|
|
|
|
index = torch.tensor([1, 2], dtype=torch.int64, device=device) |
|
clouds_selected = clouds[index] |
|
self.assertEqual(len(clouds_selected), index.numel()) |
|
check_equal(clouds_selected, enumerate(index.tolist())) |
|
|
|
|
|
index = torch.tensor([1, 0, 1], dtype=torch.float32, device=device) |
|
with self.assertRaises(IndexError): |
|
clouds_selected = clouds[index] |
|
index = 1.2 |
|
with self.assertRaises(IndexError): |
|
clouds_selected = clouds[index] |
|
|
|
def test_update_padded(self): |
|
N, P, C = 5, 100, 4 |
|
for with_normfeat in (True, False): |
|
for with_new_normfeat in (True, False): |
|
clouds = self.init_cloud( |
|
N, P, C, with_normals=with_normfeat, with_features=with_normfeat |
|
) |
|
|
|
num_points_per_cloud = clouds.num_points_per_cloud() |
|
|
|
|
|
new_points = torch.rand( |
|
clouds.points_padded().shape, device=clouds.device |
|
) |
|
new_points_list = [ |
|
new_points[i, : num_points_per_cloud[i]] for i in range(N) |
|
] |
|
new_normals, new_normals_list = None, None |
|
new_features, new_features_list = None, None |
|
if with_new_normfeat: |
|
new_normals = torch.rand( |
|
clouds.points_padded().shape, device=clouds.device |
|
) |
|
new_normals_list = [ |
|
new_normals[i, : num_points_per_cloud[i]] for i in range(N) |
|
] |
|
feat_shape = [ |
|
clouds.points_padded().shape[0], |
|
clouds.points_padded().shape[1], |
|
C, |
|
] |
|
new_features = torch.rand(feat_shape, device=clouds.device) |
|
new_features_list = [ |
|
new_features[i, : num_points_per_cloud[i]] for i in range(N) |
|
] |
|
|
|
|
|
new_clouds = clouds.update_padded(new_points, new_normals, new_features) |
|
self.assertIsNone(new_clouds._points_list) |
|
self.assertIsNone(new_clouds._points_packed) |
|
|
|
self.assertEqual(new_clouds.equisized, clouds.equisized) |
|
self.assertTrue(all(new_clouds.valid == clouds.valid)) |
|
|
|
self.assertClose(new_clouds.points_padded(), new_points) |
|
self.assertClose(new_clouds.points_packed(), torch.cat(new_points_list)) |
|
for i in range(N): |
|
self.assertClose(new_clouds.points_list()[i], new_points_list[i]) |
|
|
|
if with_new_normfeat: |
|
for i in range(N): |
|
self.assertClose( |
|
new_clouds.normals_list()[i], new_normals_list[i] |
|
) |
|
self.assertClose( |
|
new_clouds.features_list()[i], new_features_list[i] |
|
) |
|
self.assertClose(new_clouds.normals_padded(), new_normals) |
|
self.assertClose( |
|
new_clouds.normals_packed(), torch.cat(new_normals_list) |
|
) |
|
self.assertClose(new_clouds.features_padded(), new_features) |
|
self.assertClose( |
|
new_clouds.features_packed(), torch.cat(new_features_list) |
|
) |
|
else: |
|
if with_normfeat: |
|
for i in range(N): |
|
self.assertClose( |
|
new_clouds.normals_list()[i], clouds.normals_list()[i] |
|
) |
|
self.assertClose( |
|
new_clouds.features_list()[i], clouds.features_list()[i] |
|
) |
|
self.assertNotSeparate( |
|
new_clouds.normals_list()[i], clouds.normals_list()[i] |
|
) |
|
self.assertNotSeparate( |
|
new_clouds.features_list()[i], clouds.features_list()[i] |
|
) |
|
|
|
self.assertClose( |
|
new_clouds.normals_padded(), clouds.normals_padded() |
|
) |
|
self.assertClose( |
|
new_clouds.normals_packed(), clouds.normals_packed() |
|
) |
|
self.assertClose( |
|
new_clouds.features_padded(), clouds.features_padded() |
|
) |
|
self.assertClose( |
|
new_clouds.features_packed(), clouds.features_packed() |
|
) |
|
self.assertNotSeparate( |
|
new_clouds.normals_padded(), clouds.normals_padded() |
|
) |
|
self.assertNotSeparate( |
|
new_clouds.features_padded(), clouds.features_padded() |
|
) |
|
else: |
|
self.assertIsNone(new_clouds.normals_list()) |
|
self.assertIsNone(new_clouds.features_list()) |
|
self.assertIsNone(new_clouds.normals_padded()) |
|
self.assertIsNone(new_clouds.features_padded()) |
|
self.assertIsNone(new_clouds.normals_packed()) |
|
self.assertIsNone(new_clouds.features_packed()) |
|
|
|
for attrib in [ |
|
"num_points_per_cloud", |
|
"cloud_to_packed_first_idx", |
|
"padded_to_packed_idx", |
|
]: |
|
self.assertClose( |
|
getattr(new_clouds, attrib)(), getattr(clouds, attrib)() |
|
) |
|
|
|
def test_inside_box(self): |
|
def inside_box_naive(cloud, box_min, box_max): |
|
return ((cloud >= box_min.view(1, 3)) * (cloud <= box_max.view(1, 3))).all( |
|
dim=-1 |
|
) |
|
|
|
N, P, C = 5, 100, 4 |
|
|
|
clouds = self.init_cloud(N, P, C, with_normals=False, with_features=False) |
|
device = clouds.device |
|
|
|
|
|
box_min = torch.rand((N, 1, 3), device=device) |
|
box_max = box_min + torch.rand((N, 1, 3), device=device) |
|
box = torch.cat([box_min, box_max], dim=1) |
|
|
|
within_box = clouds.inside_box(box) |
|
|
|
within_box_naive = [] |
|
for i, cloud in enumerate(clouds.points_list()): |
|
within_box_naive.append(inside_box_naive(cloud, box[i, 0], box[i, 1])) |
|
within_box_naive = torch.cat(within_box_naive, 0) |
|
self.assertTrue(torch.equal(within_box, within_box_naive)) |
|
|
|
|
|
box2 = box[0, :] |
|
|
|
within_box2 = clouds.inside_box(box2) |
|
|
|
within_box_naive2 = [] |
|
for cloud in clouds.points_list(): |
|
within_box_naive2.append(inside_box_naive(cloud, box2[0], box2[1])) |
|
within_box_naive2 = torch.cat(within_box_naive2, 0) |
|
self.assertTrue(torch.equal(within_box2, within_box_naive2)) |
|
|
|
box3 = box2.expand(1, 2, 3) |
|
|
|
within_box3 = clouds.inside_box(box3) |
|
self.assertTrue(torch.equal(within_box2, within_box3)) |
|
|
|
|
|
invalid_box = torch.cat( |
|
[box_min, box_min - torch.rand((N, 1, 3), device=device)], dim=1 |
|
) |
|
with self.assertRaisesRegex(ValueError, "Input box is invalid"): |
|
clouds.inside_box(invalid_box) |
|
|
|
|
|
invalid_box = box[0].expand(2, 2, 3) |
|
with self.assertRaisesRegex(ValueError, "Input box dimension is"): |
|
clouds.inside_box(invalid_box) |
|
invalid_box = torch.rand((5, 8, 9, 3), device=device) |
|
with self.assertRaisesRegex(ValueError, "Input box must be of shape"): |
|
clouds.inside_box(invalid_box) |
|
|
|
def test_estimate_normals(self): |
|
for with_normals in (True, False): |
|
for run_padded in (True, False): |
|
for run_packed in (True, False): |
|
|
|
clouds = TestPointclouds.init_cloud( |
|
3, |
|
100, |
|
with_normals=with_normals, |
|
with_features=False, |
|
min_points=60, |
|
) |
|
nums = clouds.num_points_per_cloud() |
|
if run_padded: |
|
clouds.points_padded() |
|
if run_packed: |
|
clouds.points_packed() |
|
|
|
normals_est_padded = clouds.estimate_normals(assign_to_self=True) |
|
normals_est_list = struct_utils.padded_to_list( |
|
normals_est_padded, nums.tolist() |
|
) |
|
self.assertClose(clouds.normals_padded(), normals_est_padded) |
|
for i in range(len(clouds)): |
|
self.assertClose(clouds.normals_list()[i], normals_est_list[i]) |
|
self.assertClose( |
|
clouds.normals_packed(), torch.cat(normals_est_list, dim=0) |
|
) |
|
|
|
def test_subsample(self): |
|
lengths = [4, 5, 13, 3] |
|
points = [torch.rand(length, 3) for length in lengths] |
|
features = [torch.rand(length, 5) for length in lengths] |
|
normals = [torch.rand(length, 3) for length in lengths] |
|
|
|
pcl1 = Pointclouds(points=points).cuda() |
|
self.assertIs(pcl1, pcl1.subsample(13)) |
|
self.assertIs(pcl1, pcl1.subsample([6, 13, 13, 13])) |
|
|
|
lengths_max_4 = torch.tensor([4, 4, 4, 3]).cuda() |
|
for with_normals, with_features in itertools.product([True, False], repeat=2): |
|
with self.subTest(f"{with_normals} {with_features}"): |
|
pcl = Pointclouds( |
|
points=points, |
|
normals=normals if with_normals else None, |
|
features=features if with_features else None, |
|
) |
|
pcl_copy = pcl.subsample(max_points=4) |
|
for length, points_ in zip(lengths_max_4, pcl_copy.points_list()): |
|
self.assertEqual(points_.shape, (length, 3)) |
|
if with_normals: |
|
for length, normals_ in zip(lengths_max_4, pcl_copy.normals_list()): |
|
self.assertEqual(normals_.shape, (length, 3)) |
|
else: |
|
self.assertIsNone(pcl_copy.normals_list()) |
|
if with_features: |
|
for length, features_ in zip( |
|
lengths_max_4, pcl_copy.features_list() |
|
): |
|
self.assertEqual(features_.shape, (length, 5)) |
|
else: |
|
self.assertIsNone(pcl_copy.features_list()) |
|
|
|
pcl2 = Pointclouds(points=points) |
|
pcl_copy2 = pcl2.subsample(lengths_max_4) |
|
for length, points_ in zip(lengths_max_4, pcl_copy2.points_list()): |
|
self.assertEqual(points_.shape, (length, 3)) |
|
|
|
def test_join_pointclouds_as_batch(self): |
|
""" |
|
Test join_pointclouds_as_batch |
|
""" |
|
|
|
def check_item(x, y): |
|
self.assertEqual(x is None, y is None) |
|
if x is not None: |
|
self.assertClose(torch.cat([x, x, x]), y) |
|
|
|
def check_triple(points, points3): |
|
""" |
|
Verify that points3 is three copies of points. |
|
""" |
|
check_item(points.points_padded(), points3.points_padded()) |
|
check_item(points.normals_padded(), points3.normals_padded()) |
|
check_item(points.features_padded(), points3.features_padded()) |
|
|
|
lengths = [4, 5, 13, 3] |
|
points = [torch.rand(length, 3) for length in lengths] |
|
features = [torch.rand(length, 5) for length in lengths] |
|
normals = [torch.rand(length, 3) for length in lengths] |
|
|
|
|
|
pcl1 = Pointclouds(points=points, features=features, normals=normals) |
|
pcl3 = join_pointclouds_as_batch([pcl1] * 3) |
|
check_triple(pcl1, pcl3) |
|
|
|
|
|
N, P, D = 5, 30, 4 |
|
pcl = Pointclouds( |
|
points=torch.rand(N, P, 3), |
|
features=torch.rand(N, P, D), |
|
normals=torch.rand(N, P, 3), |
|
) |
|
pcl3 = join_pointclouds_as_batch([pcl] * 3) |
|
check_triple(pcl, pcl3) |
|
|
|
|
|
with self.assertRaisesRegex(ValueError, "same number of features"): |
|
join_pointclouds_as_batch([pcl1, pcl]) |
|
|
|
|
|
pcl_nonormals = Pointclouds(points=points, features=features) |
|
pcl3 = join_pointclouds_as_batch([pcl_nonormals] * 3) |
|
check_triple(pcl_nonormals, pcl3) |
|
pcl_scene = join_pointclouds_as_scene([pcl_nonormals] * 3) |
|
self.assertEqual(len(pcl_scene), 1) |
|
self.assertClose(pcl_scene.features_packed(), pcl3.features_packed()) |
|
|
|
|
|
pcl_nofeats = Pointclouds(points=points, normals=normals) |
|
pcl3 = join_pointclouds_as_batch([pcl_nofeats] * 3) |
|
check_triple(pcl_nofeats, pcl3) |
|
pcl_scene = join_pointclouds_as_scene([pcl_nofeats] * 3) |
|
self.assertEqual(len(pcl_scene), 1) |
|
self.assertClose(pcl_scene.normals_packed(), pcl3.normals_packed()) |
|
|
|
|
|
|
|
with self.assertRaisesRegex(ValueError, "some set to None"): |
|
join_pointclouds_as_batch([pcl, pcl_nonormals, pcl_nonormals]) |
|
with self.assertRaisesRegex(ValueError, "some set to None"): |
|
join_pointclouds_as_batch([pcl, pcl_nofeats, pcl_nofeats]) |
|
|
|
|
|
|
|
with self.assertRaisesRegex(ValueError, "Wrong first argument"): |
|
join_pointclouds_as_batch(pcl) |
|
|
|
|
|
with self.assertRaisesRegex(ValueError, "same device"): |
|
join_pointclouds_as_batch([pcl, pcl.to("cuda:0")]) |
|
|
|
@staticmethod |
|
def compute_packed_with_init( |
|
num_clouds: int = 10, max_p: int = 100, features: int = 300 |
|
): |
|
clouds = TestPointclouds.init_cloud(num_clouds, max_p, features) |
|
torch.cuda.synchronize() |
|
|
|
def compute_packed(): |
|
clouds._compute_packed(refresh=True) |
|
torch.cuda.synchronize() |
|
|
|
return compute_packed |
|
|
|
@staticmethod |
|
def compute_padded_with_init( |
|
num_clouds: int = 10, max_p: int = 100, features: int = 300 |
|
): |
|
clouds = TestPointclouds.init_cloud(num_clouds, max_p, features) |
|
torch.cuda.synchronize() |
|
|
|
def compute_padded(): |
|
clouds._compute_padded(refresh=True) |
|
torch.cuda.synchronize() |
|
|
|
return compute_padded |
|
|