|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
from pytorch3d.ops import perspective_n_points |
|
from pytorch3d.transforms import rotation_conversions |
|
|
|
from .common_testing import TestCaseMixin |
|
|
|
|
|
def reproj_error(x_world, y, R, T, weight=None): |
|
|
|
y_hat = torch.matmul(x_world, R) + T[:, None, :] |
|
y_hat = y_hat / y_hat[..., 2:] |
|
if weight is None: |
|
weight = y.new_ones((1, 1)) |
|
return (((weight[:, :, None] * (y - y_hat[..., :2])) ** 2).sum(dim=-1) ** 0.5).mean( |
|
dim=-1 |
|
) |
|
|
|
|
|
class TestPerspectiveNPoints(TestCaseMixin, unittest.TestCase): |
|
def setUp(self) -> None: |
|
super().setUp() |
|
torch.manual_seed(42) |
|
|
|
@classmethod |
|
def _generate_epnp_test_from_2d(cls, y): |
|
""" |
|
Instantiate random x_world, x_cam, R, T given a set of input |
|
2D projections y. |
|
""" |
|
batch_size = y.shape[0] |
|
x_cam = torch.cat((y, torch.rand_like(y[:, :, :1]) * 2.0 + 3.5), dim=2) |
|
x_cam[:, :, :2] *= x_cam[:, :, 2:] |
|
R = rotation_conversions.random_rotations(batch_size).to(y) |
|
T = torch.randn_like(R[:, :1, :]) |
|
T[:, :, 2] = (T[:, :, 2] + 3.0).clamp(2.0) |
|
x_world = torch.matmul(x_cam - T, R.transpose(1, 2)) |
|
return x_cam, x_world, R, T |
|
|
|
def _run_and_print(self, x_world, y, R, T, print_stats, skip_q, check_output=False): |
|
sol = perspective_n_points.efficient_pnp( |
|
x_world, y.expand_as(x_world[:, :, :2]), skip_quadratic_eq=skip_q |
|
) |
|
|
|
err_2d = reproj_error(x_world, y, sol.R, sol.T) |
|
R_est_quat = rotation_conversions.matrix_to_quaternion(sol.R) |
|
R_quat = rotation_conversions.matrix_to_quaternion(R) |
|
|
|
num_pts = x_world.shape[-2] |
|
if check_output: |
|
assert_msg = ( |
|
f"test_perspective_n_points assertion failure for " |
|
f"n_points={num_pts}, " |
|
f"skip_quadratic={skip_q}, " |
|
f"no noise." |
|
) |
|
|
|
self.assertClose(err_2d, sol.err_2d, msg=assert_msg) |
|
self.assertTrue((err_2d < 1e-3).all(), msg=assert_msg) |
|
|
|
def norm_fn(t): |
|
return t.norm(dim=-1) |
|
|
|
self.assertNormsClose( |
|
T, sol.T[:, None, :], rtol=4e-3, norm_fn=norm_fn, msg=assert_msg |
|
) |
|
self.assertNormsClose( |
|
R_quat, R_est_quat, rtol=3e-3, norm_fn=norm_fn, msg=assert_msg |
|
) |
|
|
|
if print_stats: |
|
torch.set_printoptions(precision=5, sci_mode=False) |
|
for err_2d, err_3d, R_gt, T_gt in zip( |
|
sol.err_2d, |
|
sol.err_3d, |
|
torch.cat((sol.R, R), dim=-1), |
|
torch.stack((sol.T, T[:, 0, :]), dim=-1), |
|
): |
|
print("2D Error: %1.4f" % err_2d.item()) |
|
print("3D Error: %1.4f" % err_3d.item()) |
|
print("R_hat | R_gt\n", R_gt) |
|
print("T_hat | T_gt\n", T_gt) |
|
|
|
def _testcase_from_2d( |
|
self, y, print_stats, benchmark, skip_q=False, skip_check_thresh=5 |
|
): |
|
""" |
|
In case num_pts < 6, EPnP gets unstable, so we check it doesn't crash |
|
""" |
|
x_cam, x_world, R, T = TestPerspectiveNPoints._generate_epnp_test_from_2d( |
|
y[None].repeat(16, 1, 1) |
|
) |
|
|
|
if print_stats: |
|
print("Run without noise") |
|
|
|
if benchmark: |
|
torch.cuda.synchronize() |
|
|
|
def result(): |
|
self._run_and_print(x_world, y, R, T, False, skip_q) |
|
torch.cuda.synchronize() |
|
|
|
return result |
|
|
|
self._run_and_print( |
|
x_world, |
|
y, |
|
R, |
|
T, |
|
print_stats, |
|
skip_q, |
|
check_output=True if y.shape[1] > skip_check_thresh else False, |
|
) |
|
|
|
|
|
if print_stats: |
|
print("Run with noise") |
|
x_world += torch.randn_like(x_world) * 0.1 |
|
self._run_and_print(x_world, y, R, T, print_stats, skip_q) |
|
|
|
def case_with_gaussian_points( |
|
self, batch_size=10, num_pts=20, print_stats=False, benchmark=True, skip_q=False |
|
): |
|
return self._testcase_from_2d( |
|
torch.randn((num_pts, 2)).cuda() / 3.0, |
|
print_stats=print_stats, |
|
benchmark=benchmark, |
|
skip_q=skip_q, |
|
) |
|
|
|
def test_perspective_n_points(self, print_stats=False): |
|
if print_stats: |
|
print("RUN ON A DENSE GRID") |
|
u = torch.linspace(-1.0, 1.0, 20) |
|
v = torch.linspace(-1.0, 1.0, 15) |
|
for skip_q in [False, True]: |
|
self._testcase_from_2d( |
|
torch.cartesian_prod(u, v).cuda(), print_stats, False, skip_q |
|
) |
|
|
|
for num_pts in range(6, 3, -1): |
|
for skip_q in [False, True]: |
|
if print_stats: |
|
print(f"RUN ON {num_pts} points; skip_quadratic: {skip_q}") |
|
|
|
self.case_with_gaussian_points( |
|
num_pts=num_pts, |
|
print_stats=print_stats, |
|
benchmark=False, |
|
skip_q=skip_q, |
|
) |
|
|
|
def test_weighted_perspective_n_points(self, batch_size=16, num_pts=200): |
|
|
|
y = torch.randn((batch_size, num_pts, 2)).cuda() / 3.0 |
|
x_cam, x_world, R, T = TestPerspectiveNPoints._generate_epnp_test_from_2d(y) |
|
|
|
|
|
weights = (torch.rand_like(x_world[:, :, 0]) > 0.5).float() |
|
|
|
|
|
weights[:, :6] = 1.0 |
|
|
|
|
|
|
|
y = y + (1 - weights[:, :, None]) * 100.0 |
|
|
|
def norm_fn(t): |
|
return t.norm(dim=-1) |
|
|
|
for skip_quadratic_eq in (True, False): |
|
|
|
sol = perspective_n_points.efficient_pnp( |
|
x_world, y, skip_quadratic_eq=skip_quadratic_eq, weights=weights |
|
) |
|
sol_R_quat = rotation_conversions.matrix_to_quaternion(sol.R) |
|
sol_T = sol.T |
|
|
|
|
|
|
|
for i in range(batch_size): |
|
ok = weights[i] > 0 |
|
x_world_ok = x_world[i, ok][None] |
|
y_ok = y[i, ok][None] |
|
sol_ok = perspective_n_points.efficient_pnp( |
|
x_world_ok, y_ok, skip_quadratic_eq=False |
|
) |
|
R_est_quat_ok = rotation_conversions.matrix_to_quaternion(sol_ok.R) |
|
|
|
self.assertNormsClose(sol_T[i], sol_ok.T[0], rtol=3e-3, norm_fn=norm_fn) |
|
self.assertNormsClose( |
|
sol_R_quat[i], R_est_quat_ok[0], rtol=3e-4, norm_fn=norm_fn |
|
) |
|
|